Skip to main content

Origin of Enzymes in Urine

  • Chapter
Urinary Enzymes
  • 141 Accesses

Abstract

Although it is now undisputed that renal tissue is the main source of most enzymes in the urine, some other potential sources should be considered: blood plasma, blood cells, bacteria, epithelium of the urinary tract, and seminal fluid. A classification of diagnostically relevant urinary enzymes according to their origin and handling by the kidney is given in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amador E, Zimmerman TS, Wacker WEC (1963) Urinary alkaline phosphatase activity. I. Elevated urinary LDH and alkaline phosphatase activities for the diagnosis of renal ad-enocarcinoma. JAMA 185:769–775.

    Article  PubMed  CAS  Google Scholar 

  2. Balant L, Fabre J (1979) Clinical relevance of different electrophoretic methods for the analysis of urinary proteins. In: Dubach UC, Schmidt U (eds.) Diagnostic significance of enzymes and proteins in urine. Hans Huber, Bern, Stuttgart, Vienna, pp 216–234.

    Google Scholar 

  3. Bank N, Bailine SH (1965) Urinary β-glueuronidase activity in patients with urinary tract infections. New Engl J Med 272:70–75.

    Article  PubMed  CAS  Google Scholar 

  4. Bonting SL, Pollak VE, Muehrcke RC, Kark RM (1958) Quantitative histochemistry of the nephron. Science 127:1342–1343.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner BM, Gilbert VE (1963) Elevated levels of lactic dehydrogenase, oxalacetic transaminase and catalase in infected urine. Am J Med Sci 245:31–42.

    Article  PubMed  CAS  Google Scholar 

  6. Burchardt U, Haschen RJ, Krosch H (1983) Pathobiochemische Hintergründe einer veränderten Enzymausscheidung mit dem Harn. Z Med Labor Diagn 24:187–192.

    CAS  Google Scholar 

  7. Geigy Scientific Tables (1981) eighth edition Vol 1: Units of measurement, body fluids composition of body, nutrition Leniner C (ed). Ciba-Geigy, Basle and New Jersey pp 190-195.

    Google Scholar 

  8. Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111.

    Article  PubMed  CAS  Google Scholar 

  9. Lowry OH, Passoneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New York, San Francisco, London.

    Google Scholar 

  10. Mattenheimer H, Pollak VE (1965) Enzyme activity in the kidney: Quantitative aspects of enzyme distribution in the cortex and medulla of man, dog and rat. In: Kass E (ed) Progress in pyelonephrities. Davis, Philadelphia, pp 448–454.

    Google Scholar 

  11. Mattenheimer H (1968) Aussagewert von Enzymbestimmungen im Urin. In: Schmidt FW (ed) Praktische Enzymologie. Hans Huber, Bern, pp 355–385.

    Google Scholar 

  12. Mattenheimer H (1968) Enzymology of kidney tissue. In: Dubach U (ed) Enzymes in urine and kidney. Hans Huber, Bern, pp 119–145.

    Google Scholar 

  13. Mattenheimer H (1971) Enzymes in the urine. Medical Clinics of North America 55:1493–1508.

    PubMed  CAS  Google Scholar 

  14. Mutti A (1989) Detection of renal diseases in humans; developing markers and methods. Toxicology letters 14:177–191.

    Article  Google Scholar 

  15. Peters JE, Thulin H, Wilhelm G (1974) Der Einfluss von Blutzellen im Harn auf die Aktivität von Harnenzymen. Z Urol 67:801–805.

    CAS  Google Scholar 

  16. Schapiro A, Wellington P, Gonik H (1968) Urinary betaglucuronidase in urologic diseases of the kidneys. J Urol 100:146–157.

    PubMed  CAS  Google Scholar 

  17. Vigano A, Assael BM, Villa AD, Gagliardi L, Principi N, Ghezzi P, Salmona M (1983) N-Acetyl-β-D-glucosaminidase (NAG) and NAG isoenzymes in children with upper and lower urinary tract infections. Clin Chim Acta 130:297–304.

    Article  PubMed  CAS  Google Scholar 

  18. Wacker WEC, Dorfman LE, Amador E (1964) Urinary lactic dehydrogenase activity. IV. Screening test for detection of renal disease and of arterial hypertension associated with renal disease. JAMA 188:671–676.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mattenheimer, H., Burchardt, U. (1992). Origin of Enzymes in Urine. In: Jung, K., Mattenheimer, H., Burchardt, U. (eds) Urinary Enzymes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84313-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84313-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84315-0

  • Online ISBN: 978-3-642-84313-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics