Skip to main content

The Formation of Cooperative Cell Assemblies in the Visual Cortex

  • Chapter
Neuronal Cooperativity

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 49))

Abstract

The retinal image of a visual scene consists of a two-dimensional continuous distribution of grey levels. In order to identify particular figures or objects it needs to be determined which of the local luminance gradients result from particular objects and which are generated from the embedding background. Some grouping must be performed in order to associate these luminance distributions with the contours of a single object, to segregate signals from objects with overlapping contours from each other and from the signals generated by the background. These operations are commonly addressed as scene segmentation or figure-ground segregation. Because most of them are usually carried out subconsciously and do not require directing selective attention to particular features of the scene, these operations are called “preattentive visual processes” or “early visual processes” (for reviews and examples see Julesz 1971; Marr 1976; Treisman 1986; Ramachandran 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann, L., Luhmann, H.J., Greuel, J.M., Singer, W. (1987): Functional and neuronal binocularity in kittens raised with rapidly alternating monocular occlusion. J. Neurophysiol 58, 965–980

    Google Scholar 

  • Artola, A., Singer, W. (1987): Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649–652

    Article  ADS  Google Scholar 

  • Bear, M.F., Singer, W. (1986): Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320, 172–176

    Article  ADS  Google Scholar 

  • Bienenstock, E., von der Malsburg, C. (1987): A neural network for invariant pattern recognition. Europhys. Lett. 4, 121–126

    Article  ADS  Google Scholar 

  • Buisseret, P., Singer, W. (1983) Proprioceptive signals from extraocular muscles gate experience dependent modifications of receptive fields in the kittens visual cortex. Exp. Brain Res. 51, 443–450

    Google Scholar 

  • Buisseret, P., Gary-Bobo, E., Imbert, M. (1978): Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens. Nature 272, 816–817

    Article  ADS  Google Scholar 

  • Collingridge, G.L., Bliss, T.V.P. (1987): NMDA-receptors — their role in long-term potentiation. TINS 10, 288–293

    Google Scholar 

  • Crick, F. (1984): Function of the thalamic reticular complex: The searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81, 4586–4590

    Article  ADS  Google Scholar 

  • Cynader, M., Mitchell, D.E. (1977): Monocular astigmatism effects on kitten visual cortex development. Nature 270, 177–178

    Article  ADS  Google Scholar 

  • Eckhorn, R., Bauer, R. Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitböck, H.J. (1988): Coherent oscillations: A mechanism for feature linking in the visual cortex? Biol. Cybern. 60, 121–130

    Article  Google Scholar 

  • Freeman, R.D., Bonds, A.B. (1979): Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement. Science 206, 1093–1095

    Article  ADS  Google Scholar 

  • Frégnac, Y., Imbert, M. (1984): Development of neuronal selectivity in primary visual cortex of cat. Physiol. Rev. 64, 325–434

    Google Scholar 

  • Frégnac, Y., Shulz, D., Thorpe, S., Bienenstock, E. (1988): A cellular analogue of visual cortical plasticity. Nature 333, 367–370

    Article  ADS  Google Scholar 

  • Freund, T.F., Martin, K.A.C., Whitteridge, D. (1985): Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. J. Comp. Neurol. 242, 263–274

    Google Scholar 

  • Gilbert, C.D., Wiesel, T.N. (1989): Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442

    Google Scholar 

  • Gray, C.M., Singer, W. (1987): Stimulus-dependent neuronal oscillations in the cat visual cortex area 17. IBRO Abstr. Neurosci. Lett. Suppl. 22, 1301

    Google Scholar 

  • Gray, C.M, Singer, W. (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 1698–1702

    Article  ADS  Google Scholar 

  • Gray, C.M, König, P., Engel, A.K., Singer, W. (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 388, 334–337

    Article  ADS  Google Scholar 

  • Greuel, J.M., Luhmann, H.J., Singer, W. (1987): Evidence for a threshold in experience-dependent long-term changes of kitten visual cortex. Dev. Brain Res. 34, 141–149

    Article  Google Scholar 

  • Greuel, J.M., Luhmann, H.J., Singer, W. (1988): Pharmacological induction of use-dependent receptive field modifications in the visual cortex. Science 242, 74–77

    Article  ADS  Google Scholar 

  • Gu, Q., Bear, MF., Singer, W. (1989): Blockade of NMDA-receptors prevents ocularity changes in kitten visual cortex after reversed monocular deprivation. Dev. Brain Res. 47, 281–288

    Article  Google Scholar 

  • Hebb, D.O. (1949): The organization of behavior. ( Wiley, New York )

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N. (1965): Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28, 1041–1059

    Google Scholar 

  • Humphrey, A.L., Sur, M., Uhlrich, D.J., Sherman, S.M. (1985a): Projection patterns of individual Y- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J. Comp. Neurol. 233, 159–189

    Google Scholar 

  • Humphrey, A.L., Sur, M., Uhlrich, D.J., Sherman, S.M. (1985b): Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J. Comp. Neurol. 233, 190–212

    Google Scholar 

  • Julesz, B. (1971): Foundations of cyclopean perception. ( University of Chicago Press, Chicago )

    Google Scholar 

  • Kasamatsu, T., Pettigrew, J.D. (1979): Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine. J. Comp. Neurol. 185, 139–162

    Article  Google Scholar 

  • Kleinschmidt, A., Bear, M.F., Singer, W. (1987): Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238, 355–358

    Article  ADS  Google Scholar 

  • LeVay, S. (1988): Patchy intrinsic projections in visual cortex, area 18 of the cat: morphological and immunocytochemical evidence for an excitatory function. J. Comp. Neurol. 269, 265–274

    Article  Google Scholar 

  • Luhmann, H.J., Singer, W, Martinez-Millan, L. (1990a): Horizontal interactions in cat striate cortex: I. Anatomical substrate and postnatal development. Eur. J. Neurosci. 2, 344–357

    Article  Google Scholar 

  • Luhmann, H.J., Greuel, J.M., Singer, W. (1990b): Horizontal interactions in cat striate cortex: II. A current source-density analysis. Eur. J. Neurosci. 2, 358–368

    Article  Google Scholar 

  • Luhmann, H.J., Greuel, J.M., Singer, W. (1990c): Horizontal interactions in cat striate cortex. III. Ectopic receptive fields and transient exuberancy of tangential connections. Eur. J. Neurosci, 2, 369–377

    Google Scholar 

  • Marr, D. (1976): Early processing of visual information. J Phil Transactions Roy. Soc. Lond. B 275, 483–524

    Article  ADS  Google Scholar 

  • Matsubara, J., Cynader, M., Swindale, N.V., Stryker, M.P. (1985): Intrinsic projections within visual cortex: Evidence for orientation-specific local connections. Proc. Natl. Acad. Sci. USA 82, 935–939

    Article  ADS  Google Scholar 

  • Mayer, M.L., Westbrook, G.L., Guthrie, P.B. (1984): Voltage-dependent block by Mgt+ of NMDA responses in spinal cord neurones. Nature 309, 261–263

    Article  ADS  Google Scholar 

  • McGuire, B.A., Gilbert, C.D., Wiesel, T.N. (1985): Ultrastructural characterization of long-rangeclustered horizontal connections in monkey striate cortex. Soc. Neurosci. Abstr. 11, 17

    Google Scholar 

  • Price, D.J., Blakemore, C. (1985a): Regressive events in the postnatal development of association projections in the visual cortex. Nature 316, 721–724

    Article  ADS  Google Scholar 

  • Price, D.J., Blakemore, C. (1985b): The postnatal development of the association projection from visual cortical area 17 to area 18 in the cat. J. Neurosci. 5, 2443–2452

    Google Scholar 

  • Ramachandran, V.S. (1988): Perception of shape from shading. Nature 331, 163–166

    Article  ADS  Google Scholar 

  • Rauschecker, J.P., Singer, W. (1979): Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity. Nature 280, 58–60

    Article  ADS  Google Scholar 

  • Rauschecker, J.P, Singer, W. (1981): The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. (Lond.) 310, 215–239

    Google Scholar 

  • Rockland, K.S, Lund, J.S (1983): Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216, 303–318

    Article  Google Scholar 

  • Singer, W. (1979): Central-core control of visual cortex functions. In: The Neurosciences, Fourth Study Program, ed. by Schmitt, F.O. Worden, F.G. (MIT Press, Cambridge, MA ) pp. 1093–1110

    Google Scholar 

  • Singer, W. (1982): Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions. Exp. Brain Res. 47, 209–222

    Google Scholar 

  • Singer, W. (1989): Ontogenetic self-organization and learning. In: Brain organization and memory: Cells, systems and circuits ed. by McGaugh, J.L., Weinberger, N.M; Lynch, G. ( Oxford University Press, New York )

    Google Scholar 

  • Singer, W. (1990): Search for coherence: a basic principle of cortical self-organization. Concepts in Neuroscience 1, 1–26

    Google Scholar 

  • Singer, W., Rauschecker, J.P. (1982): Central core control of developmental plasticity in the kitten visual cortex: II. Electrical activation of mesencephalic and diencephalic projections. Exp. Brain Res. 47, 223–233

    Google Scholar 

  • Singer, W., Tretter, F. (1976): Unusually large receptive fields in cats with restricted visual experience. Exp. Brain Res. 26, 171–184

    Article  Google Scholar 

  • Singer, W., Rauschecker, J., Werth, R. (1977): The effect of monocular exposure to temporal contrasts on ocular dominance in kittens. Brain Res, 134, 568–572

    Article  Google Scholar 

  • Stent, G.S. (1973): A physiological mechanism for Hebb’s postulate of learning. Proc. Natl. Acad. Sci. USA 70, 997–1001

    Article  ADS  Google Scholar 

  • Stryker, M.P., Harris, W.A. (1986): Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133.

    Google Scholar 

  • Szentagothai, J. (1973): Synaptology of the visual cortex. In Handbook of Sensory Physiology, ed. by Jung, R. ( Springer, Berlin, Heidelberg )

    Google Scholar 

  • Treisman, A. (1986): Properties, parts and objects. In: Handbook of perception and human performances ed. by Boff, K., Kaufman, L., Thomas, I. ( Wiley, New York ) pp. 1–70

    Google Scholar 

  • Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N. (1986): Relationship between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170

    Google Scholar 

  • von der Malsburg, C., Bienenstock, E. (1986): A neural network for the retrieval of superimposed connection patterns. Europhys. Lett. 3, 1243–1249

    Article  Google Scholar 

  • von der Malsburg, C., Schneider, W. (1986): A neural cocktail-party processor. Biol. Cybern. 54, 29–40

    Article  Google Scholar 

  • Wiesel, T.N., Hubel, D.H. (1963): Single cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017

    Google Scholar 

  • Wiesel, T.N., Hubel, D.H. (1965a): Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040

    Google Scholar 

  • Wiesel, T.N., Hubel, D.H. (19656): Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28, 1060–1072

    Google Scholar 

  • Wilson, J.R., Webb, S.V., Sherman, S.M. (1977): Conditions for dominance of one eye during com- petitive development of central connections in visually deprived cats. Brain Res. 136, 277–287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singer, W. (1991). The Formation of Cooperative Cell Assemblies in the Visual Cortex. In: Krüger, J. (eds) Neuronal Cooperativity. Springer Series in Synergetics, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84301-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84301-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84303-7

  • Online ISBN: 978-3-642-84301-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics