Video-Microscopic Techniques to Study Axonal Transport, Neuronal Fine Structure and Cytochemical Parameters in Live Neurons

  • Dieter G. Weiss
Part of the NATO ASI Series book series (volume 58)


In the early 1980s the developments in microelectronics and computer design opened up the possibility to digitize and process microscope images in “real time”, i.e. at video rates. This led to a variety of ways to dramatically improve the quality of microscopic images and to create new applications of light microscopy. This so called “electronic revolution in light microscopy” allows the additional application of optical techniques and the use of living cells in many cases where previously only electron microscopy of dehydrated material could be used. The basic principles of the new techniques and the type of equipment required, as well as some applications in neurobiology are discussed here.


Axonal Transport Video Microscopy Squid Giant Axon Fast Axonal Transport Optical Pathlength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikens RS, Agard DA, Sedat JW (1989) Solid-state imagers for microscopy. In: Taylor DL, Wang, YL (eds) Methods in Cell Biology. Vol. 29, Chapter 16, Acad. Press, pp 291–305Google Scholar
  2. Allen RD (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Ann Rev. Biophys. biophys. Chem. 14: 265–290CrossRefGoogle Scholar
  3. Allen RD, Allen NS (1983) Video-enhanced microscopy with a computer frame memory. J. Microscopy 129: 3–17CrossRefGoogle Scholar
  4. Allen RD, Allen NS, Travis JL (1981b) Video-enhanced contrast, differential interference contrast ( AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1: 291–302PubMedCrossRefGoogle Scholar
  5. Allen RD, Metuzals J, Tasaki I, Brady ST, Gilbert SP (1982) Fast axonal transport in squid giant axon. Science 218: 1127–1129.PubMedCrossRefGoogle Scholar
  6. Allen RD, Travis JL, Allen NS, Yilmaz H (1981a) Video-enhanced contrast polarization ( AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris. Cell Motil. 1: 275–289.PubMedCrossRefGoogle Scholar
  7. Allen RD, Weiss DG, Hayden JH, Brown DT, Fujiwake H, Simpson M (1985) Gliding movement of and bidirectional organelle transport along single native microtubules from squid axoplasm: Evidence for an active role of microtubules in cytoplasmic transport. J. Cell Biol. 100: 1736–1752PubMedCrossRefGoogle Scholar
  8. Almers W, Neher E (1985) The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Letters 192: 13–18.PubMedCrossRefGoogle Scholar
  9. Anonymous (1985) Image Analysis. Principles and Practice. Published by Joyce Loebl Ltd., distributed by IRL Press, LondonGoogle Scholar
  10. Arndt-Jovin DJ, Robert-Nicoud M, Kaufman SJ, Jovin TM (1985) Fluorescence digital imaging microscopy in cell biology. Science 230: 247–256PubMedCrossRefGoogle Scholar
  11. Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321: 579–585PubMedCrossRefGoogle Scholar
  12. Bradbury S (1989) Micrometry and image analysis. In: Lacey AJ (ed) Light Microscopy in Biology: A Practical Approach. IRL Press London, pp 200–220Google Scholar
  13. Brady ST, Lasek RJ, Allen RD (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218: 1129–1131.PubMedCrossRefGoogle Scholar
  14. Bright GR, Fisher GW, Rogowska J, Taylor DL (1987) Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J. Cell Biol. 104: 1019–1033PubMedCrossRefGoogle Scholar
  15. Bright GR, Fisher GW, Rogowska J, Taylor DL (1989) Fluorescence ratio imaging microscopy. Methods. Cell Biol. 30: 157–192PubMedCrossRefGoogle Scholar
  16. Cohn SA, Ingold AL, Scholey JM (1987) Correlation between the ATPase and microtubule translocating acctivities of sea urchin kinesin. Nature 328: 160–1163.PubMedCrossRefGoogle Scholar
  17. De Brabander M, Nuydens R, Geerts H, Hopkins CR (1988) Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil. Cytoskel. 9: 30–47CrossRefGoogle Scholar
  18. De Brabander M, Nuydens R, Geerts H, Nuyens R, Leunissen J, Jacobson K (1990) Using nanovid microscopy to analyse the movement of cell membrane components in living cells. In: Herman B, Jacobson K (eds) Optical Microscopy for Biology. Wiley-Liss, New York, pp 345–356Google Scholar
  19. DeBiasio R, Bright GR, Ernst LA, Waggoner AS, Taylor DL (1987) Five-Parameter Fluorescence Imaging: Wound Healing of Living Swiss 3T3 Cells. J. Cell Biol. 105: 1613–1622PubMedCrossRefGoogle Scholar
  20. Dodt HU, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-video microscopy. Brain Res., in pressGoogle Scholar
  21. Ellis GW (1985) Microscope illuminator with fiber optic source integrator. J. Cell Biol. 101: 83aGoogle Scholar
  22. Forscher P, Kaczmarek LK, Buchanan JA, Smith SJ (1987) Cyclic AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons. J. Neurosci. 7 (11): 3600–3611PubMedGoogle Scholar
  23. Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometer-scale precision. Nature 331: 450–453.PubMedCrossRefGoogle Scholar
  24. Gilbert SP, Sloboda RD (1986) Bidirectional transport of fluorescently labeled vesicles introduced into extruded axoplasm of squid Loligo pealei. J. Cell Biol. 99: 445–452.CrossRefGoogle Scholar
  25. Giuliano KA, Nederlof MA, DeBiasio R, Lanni F, Waggoner AS, Taylor DL (1990) Multi- mode light microscopy. In: Herman B, Jacobson K (eds) Optical Microscopy for Biology. Wiley-Liss, New York, pp 543–558Google Scholar
  26. Glascott jr. PA, McSorley KM, Mittal B, Sanger JM, Sanger JW (1987) Stress fiber reformation after ATP depletion. Cell Motil. Cytoskel. 8: 118–129CrossRefGoogle Scholar
  27. Goldberg DJ, Burmeister DW (1989) Looking into growth cones. Trends in Neurosci. 12: 503–506CrossRefGoogle Scholar
  28. Grinvald A, Segal M, Kuhnt U, Manker A, Anglister L, Freeman JA, Hildesheim R (1986) Real time optical mapping of neuronal activity in vertebrate CNS in vitro and in vivo. In: de Weer P, Salzberg BM (eds) Optical Methods in Cell Physiology, Wiley, N.Y., pp 165–198.Google Scholar
  29. Gross GW, Kowalski J (1990) Experimental and theoretical analysis of random nerve cell network dynamics. In: Antognetti P, Milutinovic V (eds) Neural Networks: Concepts, Applications, and Implementations. Vol. 3, Prentice-Hall, Englewood Cliffs, in pressGoogle Scholar
  30. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450PubMedGoogle Scholar
  31. Häder D-P (1988) Computer-assisted image analysis in biological sciences. Proc. Indian Acad. Sei. (Plant Sei.) 98: 227–249Google Scholar
  32. Harada Y, Yanagida T (1988) Direct observation of molecular motility by light microscopy. Cell Motil. Cytoskel. 10: 71–76CrossRefGoogle Scholar
  33. Härtig W, Paulke B, Brückner G (1990) Development of monodisperse rhodamine-labelled latex microspheres for the retrograde tracing of neurons and the demonstration of glial cells. In: Eisner N, Roth G (eds) Brain — Perception — Cognition. Thieme Verlag Stuttgart, pp 348Google Scholar
  34. Haugland RP (1989) Handbook of Fluorescent Probes and Research Chemicals.. Molec. Probes Inc., Eugene OR, 2nd ed., 234 pGoogle Scholar
  35. Hayden JH, Allen RD (1984) Detection of single microtubules in living cells: Particle transport can occur in both directions along the same microtubule. J. Cell Biol. 99: 1785–1793PubMedCrossRefGoogle Scholar
  36. Hayden JH, Allen RD, Goldman RD (1983) Cytoplasmic transport in keratocytes: Direct visualization of particle translocation along microtubules. Cell Motil. 3: 1–19.PubMedCrossRefGoogle Scholar
  37. Herman B, Jacobson K (eds) Optical Microscopy for Biology. Wiley-Liss, New York, 1990, p 658Google Scholar
  38. Herrera AA, Banner LR (1990) The use and effects of vital fluorescent dyes: observation of motor nerve terminals and satellite cells in living frog muscles. J. Neurocytol. 19: 67–83PubMedCrossRefGoogle Scholar
  39. Holländer H, Egensperger R, Dirlich G (1989) J. Neurosci.. Meth. 29: 1–4CrossRefGoogle Scholar
  40. Honig MG, Hume RI (1989) Dil and DiO: versatile fluorescent dyes for neuronal labeling and pathway tracing. Trends in Neurosci. 12: 333–341CrossRefGoogle Scholar
  41. Inoue S (1986) Video Microscopy, Plenum Press, NY., 582 pGoogle Scholar
  42. Inoue S (1990) Whither video microscopy — towards 4-D imaging at the highest resolution of the light microscope. In: Herman B, Jacobson K (eds) Optical Microscopy for Biology. Wiley-Liss, New York, pp 497–512Google Scholar
  43. Inoue S, Inoue TD (1987) Computer-aided stereoscopic video reconstruction and serial display from high-resolution light-microscope optical sections. Ann. N.Y. Acad. Sei. 483: 392–404CrossRefGoogle Scholar
  44. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sei. USA 77: 990–994CrossRefGoogle Scholar
  45. Kater SB, Mattson MP, Cohan C, Connor J (1988) Calcium regulation of the neuronal growth cone. Trends in Neurosci. 11: 315–321CrossRefGoogle Scholar
  46. Katz LC, Burkhalter A, Dreyer WJ (1984) Nature 310: 498–500PubMedCrossRefGoogle Scholar
  47. Lee C, Chen LB (1988) Behavior of endoplasmic reticulum in living cells. Cell 54: 37–46PubMedCrossRefGoogle Scholar
  48. Lichtman JW, Magrassi L, Purvcs, D (1987) Visualization of neuromuscular junctions over periods of several months in living micc. J Neurosci 7: 1215–1222.PubMedGoogle Scholar
  49. Lichtscheidl IK, Weiss DG (1988) Visualisation of submicroscopic structures in the cytoplasm of Allium cepa inner epidermal cells by video-enhanced contrast light microscopy. Eur. J. Cell Biol. 46: 376–382Google Scholar
  50. Llinas R, Sugimori M, Lin J-W, Leopold PL, Brady ST (1989) ATP-dependent directional movement of rat synaptic vesicles injected into the presynaptic terminal of squid giant synapse. Proc. Natl. Acad. Sci. 86: 5656–5660PubMedCrossRefGoogle Scholar
  51. Loew LM, Farkas DL, Wei MD (1990) Membrane potential imaging — ratios, templates, and quantitative confocal microscopy. In: Herman B, Jacobson K (eds) Optical Microscopy for Biology. Wiley-Liss, New York, pp 131–142Google Scholar
  52. Luby-Phelps K, Taylor DL (1988) Subcellular compartmcntalization by local differentiation of cytoplasmic structure. Cell Motil. Cytoskel. 10: 28–37CrossRefGoogle Scholar
  53. Marcus DA (1988) High-performance optical filters for fluorescence analysis. Cell Motil. Cytoskel. 10: 62–70CrossRefGoogle Scholar
  54. McKenna NM, Wang Y, Konkel ME (1989) Formation and movement of myosin-containing structures in living fibroblasts. J. Cell Biol. 109: 1163–1172PubMedCrossRefGoogle Scholar
  55. Miska W, Geiger R (1987) Synthesis and characterization of luciferin derivates for use in bioluminescence enhanced enzyme immunoessays. New ultrasensitive detection systems for enzyme immunoessays I. J. Clin. Chem. Clin. Biochem. 25: 23–30.PubMedGoogle Scholar
  56. Mizushima Y (1988) Detectivity limit of very small objects by video-enhanced microscopy. Applied Optics 27: 2587–2594PubMedCrossRefGoogle Scholar
  57. Moncke E, Lucas C, Weiss DG (1985) Distribution, diffusion and transport of fluorescent dyes in cultured cells. Eur. J. Cell Biol. 36 Suppl. 7: 44.Google Scholar
  58. Mueller-Klieser W, Walenta S, Paschen W, Kallinowski F, Vaupel P (1988) Metabolic imaging in microregions of tumor and normal tissue with bioluminescence and photon counting. J. Natl. Cancer Inst. 80: 842–848PubMedCrossRefGoogle Scholar
  59. Pagano RE, Sepanski MA, Martin OC (1989) Molecular trapping of a fluorescent ceramide analogue at the golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-golgi marker for both light and electron microscopy. J. Cell Biol. 109: 2067–2079PubMedCrossRefGoogle Scholar
  60. Prpic V, Cowlen MS, Adams DO (1990) Application of digital imaging microscopy to studies of ion fluxes in murine peritoneal macrophages. In: Herman B, Jacobson K (eds) Optical Microscopy for Biology. Wiley-Liss, New York, pp 337–344Google Scholar
  61. Sammak PJ Borisy GG (1988) Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. Cell Motil. Cytoskel. 10: 237–245CrossRefGoogle Scholar
  62. Sanger JM, Dome JS, Mittal B, Somlyo AV, Sanger J (1989) Dynamics of the endoplasmatic reticulum in living non-muscle and muscle cells. Cell Motil. Cytoskel. 13: 301–319CrossRefGoogle Scholar
  63. Seitz-Tutter D, Langford GM, Weiss DG (1988) Dynamic instability of native microtubules from squid axons is rare and independent of gliding and vesicle transport. Exptl. Cell Res. 178: 504–512PubMedCrossRefGoogle Scholar
  64. Shotton DM (1988) Video-enhanced light microscopy and its applications in cell biology. J. Cell Sci. 89: 129–150PubMedGoogle Scholar
  65. Spring KR (1990) Quantitative imaging at low light levels - differential interference contrast and fluorescence microscopy without significant light loss. In: Herman B, Jacobson K (eds) Optical Microscopy for Biology. Wiley-Liss, New York, pp 513–522Google Scholar
  66. Spring KR, Lowy RJ (1989) Characteristics of low light level television cameras. In: Taylor DL, Wang YL (eds) Methods in Cell Biol., Vol. 29, Chapter 15, Acad. Press, pp 269Google Scholar
  67. Stirling RV (1986) Video techniques in neurobiology. Trends in Neurosci. 9: 145–147CrossRefGoogle Scholar
  68. Swedenburg CE, Conklin JJ (eds) (1988) Imaging Techniques in Biology and Medicine. Academic Press 1988Google Scholar
  69. Terasaki M, Song J, Wong JR, Weiss MJ, Chen LB (1984) Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell 38: 101–108PubMedCrossRefGoogle Scholar
  70. Travis JL, Bowser SS (1988) Optical approaches to the study of foraminiferan motility. Cell Motil. Cytoskel. 10: 126–136CrossRefGoogle Scholar
  71. Tsien RY (1989) Fluorescent probes of cell signaling. Ann. Rev. Neurosci. 12: 227–253PubMedCrossRefGoogle Scholar
  72. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel, force-generating protein, kinesin, involved in microtubule-based motility. Cell 42: 39–50.PubMedCrossRefGoogle Scholar
  73. Vallee RB, Paschal BM, Shpetner HS (1989) Characterization of microtubule-associated protein (MAP) 1C as the motor for retrograde organelle transport and its identification as dynein. In: Cell Movement, Vol. 2: Kinesin, Dynein, and Microtubule Dynamics. Alan R. Liss., pp 211–222Google Scholar
  74. Van Noorden CJF (1988) Enzyme reaction rate studies in tissue sections. Proc. Roy. Micr. Soc. 23: 93–97Google Scholar
  75. Wade MH, Trosko JE, Schindler M (1986) A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science 232: 525–528PubMedCrossRefGoogle Scholar
  76. Walenta S, Dötsch J, Müller-Klicser W (1990) ATP concentrations in multicellular tumor spheroids assessed by single photon imaging and quantitative bioluminescence. J. Cell Biol. 52: 389–393Google Scholar
  77. Wampler JE, Kutz K (1989) Quantitative fluorescence microscopy using photomultiplier tubes and imaging detectors. In: Methods in Cell Biology. Vol. 29, Chapter 14, Acad. Press, pp 239–251Google Scholar
  78. Wang Y-L (1989) Fluorescent analog cytochemistiy:tracing functional protein components. In: Taylor DL, Wang YL (eds) Methods in Cell Biology. Vol. 29, Chapter 1, Acad. Press, pp 1–21Google Scholar
  79. Weiss DG (1986) Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing. J. Cell Sei. Suppl. 5, 1–15Google Scholar
  80. Weiss DG (1987) Videomicroscopic measurements in living cells: dynamic determination of multiple end points for in vitro toxicology. Molec. Toxicol. 1: 465–488Google Scholar
  81. Weiss DG, Buchner K (1988) Axoplasmic transport in olfactory receptor neurons. In: Margolis FL, Getchell TV (eds) Molecular Neurobiology of the Olfactory System. Plenum Publ. Corp., N.Y., pp 217–236CrossRefGoogle Scholar
  82. Weiss DG, Galfe G, Gulden J, Seitz-Tutter D, Langford GM (1990b) Motion analysis of intracellular objects: trajectories with and without visible tracks. In: Alt W, Hoffmann G (eds) Biological Motion. Lecture Notes in Biomathematics, Vol. 89, Springer Verlag, Berlin, pp 95–116Google Scholar
  83. Weiss DG, Langford GM, Seitz-Tutter D, Gulden J, Keller F (1988b) Motion analysis of or-ganelle movements and microtubule dynamics. In: Rousset BAF (ed) Structure and Functions of the Cytoskeleton. Colloque INSERM/John Libbey Eurotext, Vol 171, Paris, pp 363–378Google Scholar
  84. Weiss DG, Langford GM, Seitz-Tutter D, Keller F (1988a) Dynamic instability and motile events of native microtubules from squid axoplasm. Cell Motil. Cytoskel. 10: 285–295CrossRefGoogle Scholar
  85. Weiss DG, Maile W, Wick RA (1989) Video microscopy. Chapter 8, In: Lacey AJ (ed) Light Microscopy in Biology. A Practical Approach. IRL Press, Oxford, pp 221–278Google Scholar
  86. Weiss DG, Meyer M, Langford GM (1990a) Studying axoplasmic transport by video microscopy and using squid giant axon as a model system. In: Gilbert DL, Adelman jr. WJ, Arnold JM (eds) Squid as Experimental Animals. Plenum Press, pp 303–321Google Scholar
  87. Wick RA (1987) Quantum-limited imaging using microchannel plate technology. Applied Optics 26: 3210–3222PubMedCrossRefGoogle Scholar
  88. Wu J-Y, London JA, Zecevic D, Höpp Ii-P, Cohen LB, Xiao C (1988) Optical monitoring of activity of many neurons in invertebrate ganglia during behaviors. Experientia 44: 369–376PubMedCrossRefGoogle Scholar
  89. Yoshikami D, Okun LM (1984) Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature 310: 53–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Dieter G. Weiss
    • 1
  1. 1.Institut für ZoologieTechnische Universität MünchenGarchingGermany

Personalised recommendations