Applications to the Study of Acetylcholine Release of the Choline Oxidase Acetylcholine Assay

  • N. Morel
  • M. Israel
Part of the NATO ASI Series book series (volume 58)

Abstract

Numerous chemical or enzymatic reactions have been coupled to light emitting systems to assay biologically important compounds (De Luca, 1978; Van Dyke, 1985), as alternatives to methods relying on radioactive labels. A chemiluminescent method to measure acetylcholine (ACh) has been developped by Israel and Lesbats (1981, 1985, 1987). Oxidation of luminol by H202 in the presence of peroxidase produces a blue light emission. Several instruments, luminometers, are now commercially available which allow to measure light emission with great precision and sensitivity (see Van Dyke, 1985, for a comparison of different luminometers). The luminescent reaction is coupled to two enzymatic reactions (Figure 1). First, ACh is hydrolysed by acetylcholinesterase, leading to the production of choline. Then choline is oxidized by choline oxidase, a bacterial enzyme, with formation of betain and H202. The choline oxidase chemiluminescent assay allows the measure of picomole amounts of ACh in biological extracts, in the nanomolar range of ACh concentration.

Keywords

Peroxide Magnesium Filtration Choline Acetylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birman S. (1985) Determination of acetylcholinesterase activity by a new chemiluminescence assay with the natural substrate. Biochem. J., 225, 825–828.PubMedGoogle Scholar
  2. Birman S., Israel M., Lesbats B. and Morel N. (1986) Solubilization and partial purification of a presynaptic membrane proxein ensuring calcium dependent acetylcholine release from proteoliposomes. J. Neurochem., 47, 433–444.PubMedCrossRefGoogle Scholar
  3. Birman S. and Meunier F.M. (1985) Inactivation of acetylcholine release from Torpedo synaptosomes in response to prolonged depolarizations. J. Physiol. (London), 368, 293–307.Google Scholar
  4. Birman S., Meunier F.M., Lesbats B., Le Caer J.P., Rossier J. and Israel M. (1990) A 15 kDa proteoiipid found in mediatophore preparations from Torpedo electric organ presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Letters, 261, 303–306.PubMedCrossRefGoogle Scholar
  5. De Luca A., ed. (1978) Bioluminescence and chemiluminescence. Methods in Enzymology, 57, Academic Press, New York.Google Scholar
  6. Israel M. and Lesbats B. (1981a) Chemiluminescent determination of acetylcholine, and continuous detection of its release from Torpedo electric organ synapses and synaptosomes. Neurochem. Int., 3, 81–90.PubMedCrossRefGoogle Scholar
  7. Israel M. and Lesbats B. (1981b) Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation in Torpedo electric organ synaptosomes. J. Neurochem., 37, 1476–1483.CrossRefGoogle Scholar
  8. Israel M. and Lesbats B. (1985) Chemiluminescent determination of acetylcholine and continuous detection of its release from tissues, in Bioluminescence and chemiluminescence: Instruments and Applications. Van Dyke K. ed. C.R.C., Boca Raton, Florida.Google Scholar
  9. Israel M. and Lesbats B. (1987) The use of bioluminescence techniques in neurobiology, with emphasis on the cholinergic system, in Neurochemistry, a practical approach. Turner A.J. and Bachelard H.S. eds, IRL Press, 113–135.Google Scholar
  10. Israel M., Lesbats B., Morel N., Manaranche R., Gulik-Krzywicki T. and Dedieu J.C. (1984) Reconstitution of a functional synaptosomal membrane possessing the protein constituents involved in acetylcholine translocation. Proc. Natl Acad. Sci. USA, 81, 277–282.PubMedCrossRefGoogle Scholar
  11. Israel M., Lesbats B., Morel N., Manaranche R. and Le Gal la Salle G. (1988) Is the acetylcholine releasing protein mediatophore present in rat brain? FEBS Letters, 233, 421–426.PubMedCrossRefGoogle Scholar
  12. Israel M., Lesbats B., Sbia M. and Morel N. (1990) Acetylcholine protein protein mediatophore at rat neuromuscular synapses. J. Neurochem., 55, 1758–1762.PubMedCrossRefGoogle Scholar
  13. Israel M., Manaranche R., Mastour-Frachon P. and Morel N. (1976) Isolation of pure cholinergic nerve endings from the electric organ of Torpedo marmorata. Biochem. J., 160, 43–55.Google Scholar
  14. Israel M., Manaranche R., Morei N., Dedieu J.C., Gulik-Krzywicki T. and Lesbats B. (1981) Redistribution of intramembrane particles related to acetylcholine release by cholinergic synaptosomes. J. Infrastructure Res., 75, 162–178.CrossRefGoogle Scholar
  15. Israel M., Meunier F.M., Morel N. and Lesbats B. (1987) Calcium-induced desensitization of acetylcholine release from synaptosomes or proteoliposomes equipped with mediatophore, a presynaptic membrane protein. J. Neurochem., 49, 975–982.PubMedCrossRefGoogle Scholar
  16. Israel M., Morel N., Lesbats B., Birman S. and Manaranche R. (1986) Purification of a presynaptic membrane protein that mediates a calcium dependent translocation of acetylcholine. Proc. Natl Acad. Sci. USA, 83, 9226–9230.PubMedCrossRefGoogle Scholar
  17. Llinas R.R. and Greenfield S.A. (1987) On-line visualization of dendritic release of acetylcholinesterase from mammalian substantia nigra neurons. Proc. Natl.Acad. Sci. USA, 84, 3047–3050.PubMedCrossRefGoogle Scholar
  18. Manaranche R., Thieffry M. and Israel M. (1980) Effect of Glycera convoluta venom on the spontaneous quantal release of transmitter. J. cell Biol., 85, 446–458.PubMedCrossRefGoogle Scholar
  19. Meunier F.M. (1984) Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ. J. Physiol. (London) 354, 121–137.Google Scholar
  20. Morel N., Israel M., Manaranche R. and Mastour-Frachon P. (1977) Isolation of pure cholinergic nerve enaings from Torpedo electric organ. J. cell Biol., 75, 43–55.PubMedCrossRefGoogle Scholar
  21. Morel N., Manaranche R., Israel M. and Gulik-Krzywicki T. (1982) Isolation of a presynaptic plasma membrane fraction from Torpedo cholinergic synaptosomes: evidence for a specific protein. J. cell Biol., 93, 349–356.PubMedCrossRefGoogle Scholar
  22. Morel N., Thieffry M. and Manaranche R. (1983) Binding of a Glycera convoluta neurotoxin to cholinergic nerve terminal plasma membranes. J. cell Biol., 97, 1737–1744.PubMedCrossRefGoogle Scholar
  23. Morot Gaudry-Talarmain Y., Diebler M.F., Robba M., Lancelot J.C., Lesbats B. and Israel M. (1989) Effect of cetiedil analogs on acetylcholine and choline fluxes in synaptosomes and vesicles. Eur. J. Pharmacol., 166, 427–433.CrossRefGoogle Scholar
  24. Muller D., Garcia-Segura L.M., Parducz A. and Dunant Y. (1987) Brief occurence of a population of presynaptic intramembrane particles coincides with transmission of a nerve impulse. Proc.Natl.Acad.Sci.USA, 84, 590–594.PubMedCrossRefGoogle Scholar
  25. Van Dyke K., ed. (1985) Bioluminescence and chemiluminescence: Instruments and Applications. C.R.C. Press, Bota Raton, Florida.Google Scholar
  26. Zimmermann H. and Whittaker V.P. (1977) Morphological and biochemical heterogeneity of cholinergic synaptic vesicles. Nature, 267, 633–635.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • N. Morel
    • 1
  • M. Israel
    • 1
  1. 1.Departement de Neurochimie lab. Neurobiologie Cellulaire et MoleculaireC.N.R.S.Gif sur YvetteFrance

Personalised recommendations