Advertisement

Endocytosis pp 27-42 | Cite as

The Dynamics of Clathrin Coats in Living Cells Measured by Advanced Fluorescence Microscopy

  • Jean Davoust
  • Pierre Cosson
Conference paper
Part of the NATO ASI Series book series (volume 62)

Abstract

Clathrin coated pits and coated vesicles are responsible for receptor-mediated endocytosis of a wide variety of ligands that bind at the cell surface (Anderson et al., 1977; Goldstein et al., 1985). Clathrin coated pits are also involved in the sorting of receptors to be transported to intracellular acidic compartments such as the Mannose-6-phosphate receptor rich pre-lysosomal compartment (Lemansky et al., 1987), the secretory granules in pancreatic endocrine insulin-secreting cells (Orci et al., 1987), or the ACTH-containing vesicles in anterior pituitary cells (Tooze and Tooze, 1986). Clathrin triskelions are composed of three heavy (180 kD) and three light (30 kD) chains. They can assemble in vitro at low pH to form clathrin baskets, the geometry of which has been extensively studied (Crowther and Pearse, 1981; Harrison and Kirchhausen, 1983; Blank and Brodsky, 1986). Clathrin triskelions are associated with adaptins (Pearse, 1988; Ahle et al., 1988; Ahle and Ungewickell, 1989), which are forming multi-units complexes specific for either plasma membrane or Golgi-derived vesicles (Robinson and Pearse, 1986; Robinson, 1987, 1989). In coated vesicles, the adaptins are presumably located between the external shell formed by clathrin triskelions and the cytoplasmic domains of transmembrane proteins with which they might interact (Vigers et al., 1986). It is generally accepted that in addition to clathrin, adaptins are required at the level of the plasma membrane or of Golgi derived membranes to form coated pits that bud into coated vesicles. The coat is then removed presumably by an uncoating ATPase characterized in vitro (Schlossman et al., 1984; Brael et al., 1984) which is identical to the hsc 70 heat shock protein (Rothman and Schmid, 1986).

Keywords

Vero Cell Fringe Pattern Anterior Pituitary Cell Coated Vesicle AtT20 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.G.W., M.S. Brown, and J.L. Goldstein. 1977. Cell. 10:351–364.PubMedCrossRefGoogle Scholar
  2. Ahle, S., and E. Ungewickell, E. 1988. J. Biol. Chem. 264: 20089–20093.Google Scholar
  3. Ahle, S., A. Mann, U. Eichelsbacher, and E. Ungewickell, E. 1988. EMBO J. 7: 919–929.PubMedGoogle Scholar
  4. Braell, W.A., D.M. Schlossman, S.L. Schmid, and J.E. Rothman. 1984. J. Cell Biol. 99:734–741.PubMedCrossRefGoogle Scholar
  5. Blank, G.S., F.M. Brodsky. 1986. EMBO J. 5:2087–2095.PubMedGoogle Scholar
  6. Bruder, G., B. Wiedenmann. 1986. Exp. Cell Res. 164:449–462.PubMedCrossRefGoogle Scholar
  7. Cosson, P., I. de Curtis, J. Pouyssegur, G. Griffiths, and J. Davoust. 1989. J. Cell Biol. 108:377–387.PubMedCrossRefGoogle Scholar
  8. Cosson, P., R.Peperkok, R.Back, and J. Davoust. 1990. (submitted).Google Scholar
  9. Crowther, R.A., and B.M.F. Pearse. 1981. J. Cell Biol. 91:790–797.PubMedCrossRefGoogle Scholar
  10. Daiss, J.L., and T.F. Roth. 1983. Methods in Enzymology. 98:337–349.PubMedCrossRefGoogle Scholar
  11. Daukas, G. and S.H. Zigmond. 1985. J. Cell Biol. 101:1637–1679.CrossRefGoogle Scholar
  12. Davoust, J., P.F. Devaux, and L. Leger. 1982. EMBO J. 1:1233–1238.PubMedGoogle Scholar
  13. Davoust, J., J. Gruenberg, and K.E. Howell. 1987. EMBO J. 6:3601–3609.PubMedGoogle Scholar
  14. Gilbert, S.P., R.D. Allen, and R.D. Sloboda. 1985. Nature. 315:245–248.PubMedCrossRefGoogle Scholar
  15. Goldstein, J.L., M.S. Brown, R.G.W. Anderson, D.W. Russell, and W.J. Schneider. 1985. Ann. Rev. Cell Biol. 1:1–39.PubMedCrossRefGoogle Scholar
  16. Goud, B., C. Huet, and D. Louvard. 1985. J. Cell Biol. 100:521–527.PubMedCrossRefGoogle Scholar
  17. Harrison, S.C., and T. Kirchhausen. 1983. Cell. 33:650–652.PubMedCrossRefGoogle Scholar
  18. Hertel, C., S.J. Coulter, J.P. Perkins. 1986. J. Biol. Chem. 261:5974–5980.PubMedGoogle Scholar
  19. Heuser, J., and T. Kirchhausen. 1985. J. Ultrastructure Res. 92:1–27.CrossRefGoogle Scholar
  20. Heuser, J.E., and J. Keen. 1988. J. Cell Biol. 107:877–886.PubMedCrossRefGoogle Scholar
  21. Heuser, J. 1989. J. Cell Biol. 108:401–411.PubMedCrossRefGoogle Scholar
  22. Heuser, J.E., and R.G.W. Anderson. 1989. J. Cell Biol. 108:389–400.PubMedCrossRefGoogle Scholar
  23. Iacopetta, B.J., S. Rothenberger, L.C. Kühn. 1988. Cell. 54:485–489.PubMedCrossRefGoogle Scholar
  24. Jacobson, K., and J. Wojcieszin. 1984. Proc. Natl. Acad. Sci. USA. 81:6747–6751.PubMedCrossRefGoogle Scholar
  25. Koppel, D.E. and M.P. Sheetz. 1983. Biophys. J. 43:175–181.PubMedCrossRefGoogle Scholar
  26. Lanni, F., and B.R. Ware. 1982. Rev. Sci. Instrum. 53:905–908.CrossRefGoogle Scholar
  27. Mahaffey, D.T., M.S. Moore, F.M. Brodsky, and R.G.W. Anderson. 1989. J. Cell Biol. 108:1615–1624.PubMedCrossRefGoogle Scholar
  28. Moore, M.S., D.T. Mahaffey, F.M. Brodsky, and R.G.W. Anderson. 1987. Science. 236:558–563.PubMedCrossRefGoogle Scholar
  29. Myles, D.G., Primakoff, P. and D.E. Koppel. 1984. J. Cell. Biol. 98:1905–1909.PubMedCrossRefGoogle Scholar
  30. Orci, L., M. Ravazzola, M.-J. Storch, R.G.W. Anderson, J.-D. Vassalli, and A. Perrelet. 1987. Cell. 49:865–868.PubMedCrossRefGoogle Scholar
  31. Pearse, B.M.F. 1983. 98:320–326.Google Scholar
  32. Pearse, B. 1988. EMBO J. 7:3331–3336.PubMedGoogle Scholar
  33. Pollerberg, G.E., M. Schachner and J. Davoust. 1986. Nature. 324:462–465.PubMedCrossRefGoogle Scholar
  34. Robinson, M.S., and B.M.F. Pearse. 1986. J. Cell Biol. 102:48–54.PubMedCrossRefGoogle Scholar
  35. Robinson, M.S. 1987. J. Cell Biol. 104:887–895.PubMedCrossRefGoogle Scholar
  36. Robinson, M.S. 1989. J. Cell Biol. 108:833–842.PubMedCrossRefGoogle Scholar
  37. Rothman, J.E. and S.L. Schmid. 1986. Cell. 46:5–9.PubMedCrossRefGoogle Scholar
  38. Schlossman, D.M., Schmid, S.L., Braell, W.A., and J.E. Rothman. 1984. J. Cell Biol. 99:723–733.PubMedCrossRefGoogle Scholar
  39. Simion, F.A., D. Winek, F. Brandan, B. Fleischer, S. Fleischer. 1983. Methods in Enzymology. 98:326–337.PubMedCrossRefGoogle Scholar
  40. Smith, B.A. and H.M. McConnell. 1978. Proc. Natl. Acad. Sci. USA 75:2759–2763.PubMedCrossRefGoogle Scholar
  41. Smith, B.A., W.R. Clark and H.M. McConnell. 1979. Proc. Natl. Acad. Sci. USA 76:5641–5644.PubMedCrossRefGoogle Scholar
  42. Sullivan, P.C., A.L. Ferris, and B. Storrie. 1987. J. Cell. Physiol. 131:58–63.PubMedCrossRefGoogle Scholar
  43. Tooze, J., and S.A. Tooze. 1986. J. Cell Biol. 103:839–850.PubMedCrossRefGoogle Scholar
  44. Unanue, E.R., Ungewickell, E., Branton, D. 1981. Cell. 26:439–446.PubMedCrossRefGoogle Scholar
  45. Ungewickell, E., and D. Branton. 1981. Nature. 289:420–422.PubMedCrossRefGoogle Scholar
  46. Vigers, G.P.A., R.A. Crowther, and B.M.F. Pearse. 1986. EMBO J. 5:2079–2085.PubMedGoogle Scholar
  47. Weibel, E.R. 1979. Stereological methods.I. Practical methods for biological morphometry. Acad. Press Inc., New York. 318 pp.Google Scholar
  48. Wojcieszyn, J.W., R.A. Schlegel, E.S. Wu, and K.A. Jacobson. 1981. Proc. Natl. Acad. Sci. USA. 78:4407–4410.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Jean Davoust
    • 1
    • 2
  • Pierre Cosson
    • 1
    • 2
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany
  2. 2.Centre d’Immunologie INSERM-CNRS de Marseille-LuminyMarseille, Cedex 9France

Personalised recommendations