Advertisement

Endocytosis pp 317-324 | Cite as

Endocytosis in MDCK Cells

  • Robert G. Parton
Conference paper
Part of the NATO ASI Series book series (volume 62)

Abstract

In polarized cells the plasma membrane is divided into apical and basolateral domains. Membrane is internalized from both these domains and the internalized components can follow several different routes, for example, they can be transported to the opposite domain of the cell (transcytosis), routed to lysosomes or recycled back to the same domain. Despite these continuous processes the distinct protein and lipid composition of the two surface domains must be maintained. In this review I will discuss experiments which led us to formulate a model of the endocytic pathways in the Madin Darby Canine Kidney (MDCK) cell, a model epithelial cell system (reviewed by Simons and Fuller, 1985), and briefly consider transcytosis of endogenous glycoproteins in these cells.

Keywords

Early Endosome Late Endosome Endocytic Pathway Madin Darby Canine Kidney Cell Surface Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bacallao, R., C. Antony, C. Dotti, E. Karsenti, E.H.K. Stelzer, and K. Simons. 1989. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109: 2817–2832.PubMedCrossRefGoogle Scholar
  2. Baker, D., L. Hicke, M. Rexach, M. Schleyer, and R. Schekman. 1988. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 54: 335–344.PubMedCrossRefGoogle Scholar
  3. Bomsel, M., K. Prydz, R.G. Parton, J. Gruenberg, and K. Simons. 1989. Endocytosis in filter-grown Madin-Darby canine kidney cells. J. Cell Biol. 109: 3243–3258.PubMedCrossRefGoogle Scholar
  4. Bomsel, M., R.G. Parton, S.A. Kuznetsov, T.A. Schroer, and J. Gruenberg. 1990. Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62:719–731.PubMedCrossRefGoogle Scholar
  5. Bourne, H.R. 1988. Do GTPases direct membrane traffic in secretion? Cell 53: 669–671.PubMedCrossRefGoogle Scholar
  6. Brändli, A. W., R.G. Parton and K. Simons. 1990. Transcytosis in MDCK cells: identification of glycoproteins transported bidirectionally between both plasma membrane domains. J. Cell Biol. In Press.Google Scholar
  7. Casanova, J. E., P.P. Breitfeld, and K.E. Mostov. 1990. Phosphorylation is required for efficient transcytosis of the polymeric immunoglobulin receptor. Science 246: 742–745.CrossRefGoogle Scholar
  8. Chavrier, P., R. G. Parton, H.P. Hauri, K. Simons, and Marino Zerial.1990. Localization of low molecular weight GTP-binding proteins to exocytic and endocytic compartments. Cell 62: 317–329.PubMedCrossRefGoogle Scholar
  9. Fuller, S.D., and K. Simons. 1986. Transferrin receptor polarity and recycling accuracy in “tight” and “leaky” strains of Madin-Darby canine kidney cells. J. Cell Biol. 103: 1767–1779.PubMedCrossRefGoogle Scholar
  10. Goud, B., A. Salminen, N.C. Walworth, and P.J. Novick. 1988. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53: 753–768.PubMedCrossRefGoogle Scholar
  11. Griffiths, G., B. Hoflack, K. Simons, I. Mellman and S. Kornfeld. 1988. The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52: 329–341.PubMedCrossRefGoogle Scholar
  12. Griffiths, G., R. Matteoni, R. Back, and B. Hoflack. 1990. Characterization of the cation-independent mannose-6-phosphate receptor-enriched prelysosmal compartment. J. Cell Sci. 95: 441–461.PubMedGoogle Scholar
  13. Gruenberg, J., G. Griffiths, K.E. Howell. 1989. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle function in vitro. J. Cell Biol. 108: 1301–1316.PubMedCrossRefGoogle Scholar
  14. Gruenberg, J. and K.E. Howell. 1989. Membrane traffic in endoeytosis: insights from cell-free assays. Ann. Rev. Cell Biol. 5:453–481.PubMedCrossRefGoogle Scholar
  15. Helenius, A., I. Mellman, D. Wall, and A. Hubbard. 1983. Endosomes. Trends Biochem. Sci. 8: 245–250.CrossRefGoogle Scholar
  16. Hughson, E. J. and C.R. Hopkins. 1990. Endocytic pathways in polarized Caco-2 cells: identification of an endosomal compartment accessible from both apical and basolateral surfaces. J.Cell Biol. 110: 337–348.PubMedCrossRefGoogle Scholar
  17. Hunziker W. and I. Mellman. 1989. Expression of macrophage- lymphocyte receptors in MDCK cells: polarity and transcytosis differ for isoforms with or without coated pit localization domains. J. Cell Biol. 109: 3291–3302.PubMedCrossRefGoogle Scholar
  18. Kelly, R.B. 1990. Microtubules, membrane traffic and cell organization. Cell 61: 5–7.PubMedCrossRefGoogle Scholar
  19. Kornfeld, S. and I. Mellman. 1989. The biogenesis of lysosomes. Ann. Rev. Cell Biol. 5: 483–526.PubMedCrossRefGoogle Scholar
  20. Melançon, P., B.S. Glick, V. Malhotra, P.J. Weidman, T. Serafini, M.L. Gleason, L. Orci, and J.E. Rothman. 1987. Involvement of GTP-binding “G” proteins in transport through the Golgi stack. Cell 51:1053–1062.PubMedCrossRefGoogle Scholar
  21. Mostov K.E. and D.L Deitcher. 1986. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses I. Cell 46: 613–621.PubMedCrossRefGoogle Scholar
  22. Mostov, K.E. and N.E. Simister. 1985. Transcytosis. Cell 43: 389–390.CrossRefGoogle Scholar
  23. Parton, R.G., K. Prydz, M. Bomsel, K. Simons, and G. Griffiths. 1989. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol. 109: 3259–3272.PubMedCrossRefGoogle Scholar
  24. Pesonen, M., W. Ansorge, and K. Simons. 1984. Transcytosis of the G protein of vesicular stomatitis virus after implantation into the apical plasma membrane of Madin-Darby Canine Kidney cells. I. Involvement of endosomes and lysosomes. J. Cell Biol. 99: 796–802.PubMedCrossRefGoogle Scholar
  25. Salminen, A., and P.J. Novick. 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49: 527–538.PubMedCrossRefGoogle Scholar
  26. Schmitt, H.D., P. Wagner, E. Pfaff, and D. Gallwitz. 1986. The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Cell 47:401–412.PubMedCrossRefGoogle Scholar
  27. Segev, N., J. Mulholland, and D. Bostein. 1988. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52, 915–924.PubMedCrossRefGoogle Scholar
  28. Simons K. and S.D. Fuller. 1985. Surface polarity in epithelia. Ann. Rev. Cell Biol. 1: 243–288.PubMedCrossRefGoogle Scholar
  29. Swanson, J.A., A. Bushnell, and S.C. Silverstein. 1987. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules. Proc. Natl. Acad. Sci. USA 84: 1921–1925.PubMedCrossRefGoogle Scholar
  30. Van Deurs, B., S.H. Hansen, O.W. Petersen, E.L. Melby, and K. Sandvig. 1990. Endoeytosis, intracellular transport and transcytosis of the toxic protein ricin by a polarized epithelium. Eur. J. Cell. Biol 51: 96–109PubMedGoogle Scholar
  31. Von Bonsdorff, C.-H., S.D. Fuller, and K. Simons. 1985. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters. EMBO J. 4: 2781–2792.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Robert G. Parton
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations