Skip to main content

Metal Toxicity

  • Chapter
Soil Mineral Stresses

Part of the book series: Monographs on Theoretical and Applied Genetics ((GENETICS,volume 21))

Abstract

Problems posed to plants by metal toxicity in the soils of the world are basically of two kinds. The first kind are of natural origin. These arise either as a consequence of the nature of the parent material from which a particular soil is derived, or from the processes of soil formation. Such events tend to lead to toxicities due to the products of soil mineral decomposition under acid conditions, predominantly to aluminium and/or manganese and iron. The soils characterised by aluminium and manganese toxicities comprise some 40% of the world’s land area given over to arable farming (Clark 1982), and as such, potentially pose a major constraint to the world’s agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrigo WM, Novero AU, Coronel VP, Cabuslay GS, Blanco LC, Parao FT, Yoshido AS (1985) Somatic cell culture at IRRI. Biotechnology in International Agricultural Research. IRRI, Manila, Philippines, p 149

    Google Scholar 

  • Al-Hiyaly SAK (1989) Evolution of zinc tolerance under electricity pylons. PhD Thesis, University of Liverpool, Liverpool

    Google Scholar 

  • Al-Khatib M (1991) Salinity tolerance breeding in lucerne. PhD Thesis, University of Liverpool, Liverpool

    Google Scholar 

  • Allen WR, Sheppard PM (1971) Copper tolerance in some Californian populations of the monkey flower, Mimulus guttatus. Proc R Soc Lond Ser B 177: 177–196

    Google Scholar 

  • Andrew CS, Hegarty MP (1969) Comparative responses to manganese excess of eight tropical and four temperate legumes. Aust J Agric Res 20: 687–696

    Google Scholar 

  • Aniol A (1990) Genetics of tolerance to aluminium in wheat (Triticum aestivum L. Thell). Plant Soil 123: 223–227

    CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminium tolerance in wheat, rye, and triticale. Can J Genet Cytol 26: 701–705

    Google Scholar 

  • Ashraf M, McNeilly T, Bradshaw AD (1986) The potential for evolution of salt ( NaCl) tolerance in seven grass species. New Phytol 103: 299–309

    Google Scholar 

  • Bahia AFC, Franca GE, Pitta GVE, Magnavaca R, Mendes JF, Bahia FGFTC, Pereira P (1978) Evaluation of corn inbred lines and populations in soil acidity conditions. XI Annu Brasilian Maize Sorghum Conf, Piracicaba SP, Brasil, pp 51–58 (in Portugese)

    Google Scholar 

  • Baker AJM (1978) Ecophysiological aspects of zinc tolerance in Silene maritima With. New Phytol 80: 635–642

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper-accumulate metallic elements - a review of their distribution, ecology, and phytochemistry. Biorecovery 1: 81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem Spec Bioavail 1: 7–17

    CAS  Google Scholar 

  • Baligar VC, Kinraide TB, Wright RJ, Bennett OL (1987) Al effects on growth and P, Ca and Mg uptake efficiency in red clover cultivars. J Plant Nutr 10: 131–1137

    Google Scholar 

  • Bastos CR (1982) Inheritance study of aluminium tolerance in sorghum in nutrient culture. PhD Thesis, Mississippi State University, Mississippi State

    Google Scholar 

  • Baumeister W (1954) Uber den Einfluss des Zinks bei Silene inflata Smith. I Mitteilung. Ber Dtsch Bot Ges 67: 205–213

    CAS  Google Scholar 

  • Baumeister W, Burghardt H (1956) Uber den Einfluss des Zinks bei Silene inflata (With) II Mitteilung: CO2-Assimilation und Pigmentgehalt. Ber Dtsch Bot Ges 69: 161–168

    CAS  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC, Boca Raton, 223 pp

    Google Scholar 

  • Borgonovi RA, Schaffert RE, Pitta GVE, Magnavaca R, Alves VMC (1987) Aluminium tolerance in Sorghum. In: Gabelman WH, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Nijhoff, Dordrecht, pp 213–221

    Google Scholar 

  • Boye-Goni SR (1982) Combining ability and inheritance of aluminium tolerance in grain sorghum [Sorghum bicolor (L.) Moench]. PhD Thesis, University of Arizona, Tucson

    Google Scholar 

  • Boye-Goni SR, Macarian V (1985) Diallel analysis of aluminium tolerance in selected lines of grain sorghum. Crop Sci 25: 749–752

    Google Scholar 

  • Bradshaw AD, McNeilly T (1981) Evolution and pollution. Arnold, London Briggs KE, Nyachiro JM (1988) Genetic variation for aluminium tolerance in Kenyan wheat cultivars. Commum Soil Sci Plant Anal 19: 1273–1284

    Google Scholar 

  • Broker W (1963) Genetisch-physiologische Untersuchungen uber die Zinkvertraglichkeit von Silene inflata Sm. Flora 153: 122–156

    Google Scholar 

  • Brooks RR, Malaisse F (1989) Mineral enriched sites in South Central Africa. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, p 53

    Google Scholar 

  • Camargo CEO (1984) Genetic evidence of aluminium tolerance in rice. Bragantia 43: 95–110 (in Portuguese)

    CAS  Google Scholar 

  • Campbell AT, Nuernberg NJ, Foy CD (1989) Differential response of alfalfa to aluminium stress. J Plant Nutr 12: 291–305

    CAS  Google Scholar 

  • Campbell LG, Lafever TN (1976) Correlation of field and nutrient culture techniques of screening wheat for aluminium tolerance. In: Wright M (ed) Plant adaptation to mineral stress in problem soils. Cornell Univ Agric Stn, Ithaca, NY, pp 277–286

    Google Scholar 

  • Cardus JR (1987) Intraspecific variation for tolerance to aluminium toxicity in white clover. J Plant Nutr 10: 821–830

    Google Scholar 

  • Carter OG, Rose I A, Reading PF (1975) Variation in susceptibility to manganese in 30 soybean lines. Crop Sci 15: 730–732

    CAS  Google Scholar 

  • Cartwright B, Rathgen AJ, Sparrow DHB, Paull JG, Zarcinas BA (1987) Boron tolerance in Australian varieties of wheat and barley. In: Gabelman HW, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Nijhoff, Dordrecht, pp 131–151

    Google Scholar 

  • Carver BF, Inskeep WP, Wilson NP, Westerman RL (1988) Seedling tolerance to aluminium toxicity in hard red winter wheat germplasm. Crop Sci 28: 463–467

    Google Scholar 

  • Chandhry MA, Yoshida S, Vergara BS (1986) Induced mutations for aluminium tolerance after N-methyl-N-nitrosourea treatment of fertilized egg cells in rice. Environ Exp Bot 27: 37–43

    Google Scholar 

  • Clark RB (1982) Plant response to mineral element toxicity and deficiency. In: Christiansen MN, Lewis CF (eds) Breeding plants for less favourable environments. Wiley, New York, pp 71–142

    Google Scholar 

  • Clarkson DT (1966) Aluminium tolerance in species within the genus Agrostis. J Ecol 54: 167–178

    Google Scholar 

  • Clymo RS (1962) An experimental approach to part of the calcicole problem. J Ecol 50: 707–731

    CAS  Google Scholar 

  • Cook SCA, Lefebre C, McNeilly T (1972) Competition between metal tolerant and normal plant populations on normal soil. Evolution 26: 366–372

    Google Scholar 

  • Culvenor RA (1985) Tolerance of Phalaris aquatica L. populations and some agricultural species, and the effect of aluminium on manganese tolerance of P. aquatica. Aust J Agric Res 36: 695–708

    CAS  Google Scholar 

  • Culvenor RA, Oram RN, Fazekas de Groth C (1986a) Variation in tolerance in Phalaris aquatica L. and a related species to aluminium in nutrient solution and soil. Aust J Agric Res 37: 383–395

    CAS  Google Scholar 

  • Culvenor RA, Oram RN, Wood JT (1986b) Inheritance of aluminium tolerance in Phalaris aquatica L. Aust J Agric Res 37: 397–408

    CAS  Google Scholar 

  • Dessereaux L, Ouelette CJ (1958) Tolerance of alfalfa to manganese toxicity in sand culture. Can J Soil Sci 38: 8–13 Devine TE (1982) Genetic fitting of crops to problem soils. In: Christiansen MN, Lewis CF (eds) Breeding plants for less favourable environments. Wiley, New York, pp 143–173

    Google Scholar 

  • Devine TE, Foy CD, Fleming AL, Hanson TA, Campbell TA, McMurtrey JE, Schwartz JW (1976) Development of alfalfa strains with differential tolerance to aluminium toxicity. Plant Soil 44: 73–79

    CAS  Google Scholar 

  • Duncan RR (1988) Sequential development of acid soil–tolerant sorghum genotypes under field stress conditions. Commun Soil Sci Plant Anal 19: 1295–1305

    CAS  Google Scholar 

  • Evans J, Scott BL, Lill WJ (1987) Manganese tolerance in subterranean clover ( Trifolium subterraneum L.) genotypes grown with nitrate or symbiotic nitrogen. Plant Soil, 97: 207–215

    Google Scholar 

  • Foy CD (1974) Effects of aluminium in plant growth. In: Clarkson EW (ed) The plant root and its environment. University Press of Virginia, Charlottesville, pp 57–97

    Google Scholar 

  • Foy CD (1983a) Plant adaptation to mineral stress in problem soils. Iowa State J Res 57: 339–354

    CAS  Google Scholar 

  • Foy CD (1983b) The physiology of plant adaptation to mineral stress. Iowa State J Res 57: 355–391

    CAS  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminium–toxic soils. Commun Soil Sci Plant Anal 19: 959–987

    CAS  Google Scholar 

  • Foy CD, Lafaver NH, Schwartz JW, Fleming AL (1974) Aluminium tolerance of wheat cultivars related to region of origin. Agron J 66: 751–758

    CAS  Google Scholar 

  • Furlani PR, Clark RB (1987) Plant traits for evaluation of responses of sorghum genotypes to aluminium. In: Gabelman HW, Loughman BC (eds) Genetic aspects of plant nutrition. Nijhoff, The Hague, pp 247–254

    Google Scholar 

  • Furlani PR, Clark RB, Ross WM, Maranville JW (1983) Variability and genetic control of aluminium tolerance in sorghum genotypes. In: Saric MR, Loughman BC (eds) Genetic aspects of plant nutrition. Nijhoff, The Hague, pp 453–461

    Google Scholar 

  • Garcia O, da Silva WJ, Massei MAS (1979) An efficient method for screening maize inbreds for aluminium tolerance. Maydica 24: 75–82

    CAS  Google Scholar 

  • Gartside DW, McNeilly T (1974) The potential for evolution of heavy metal tolerance in plants III. Copper tolerance in normal populations of different species. Heredity 32: 335–348

    Google Scholar 

  • Gourley LM (1987) Identifying aluminium tolerance in sorghum genotypes grown on tropical acid soils. In: Gabelman HW, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Nijhoff, Dordrecht, pp 89–98

    Google Scholar 

  • Gourley LM, Rogers SA, Ruiz-Gomez C, Clark RB (1990) Genetic aspects of aluminium tolerance in sorghum. Plant Soil 123: 211–216

    CAS  Google Scholar 

  • Gries B (1966) Zellphysiologische Untersuchungen uber die Zinkresistenz bei Galmeiok-otypen und Normalformen von Silene cucubalis Wib. Flora 156: 271–290

    CAS  Google Scholar 

  • Grime JP, Hodgson JG (1969) An investigation of the ecological significance of lime chlorosis by means of large–scale comparative experiments. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford, pp 67–99

    Google Scholar 

  • Heenan DP, Carter OG (1975) Response of two soybean cultivars to manganese toxicity as affected by pH and calcium levels. Aust J Agric Res 26: 967–974

    CAS  Google Scholar 

  • Heenan DP, Carter OG (1976) Tolerance of soybean cultivars to manganese toxicity. Crop Sci 16: 389–391

    CAS  Google Scholar 

  • Heenan DP, Carter OG (1977) Influence of temperature on the expression of manganese tolerance by two soybean varieties. Plant Soil 47: 219–227

    CAS  Google Scholar 

  • Heenan DP, Campbell LC, Carter OG (1981) Inheritance of tolerance to high manganese supply in soybeans. Crop Sci 21: 626–627

    Google Scholar 

  • Helyar KR (1978) Effects of aluminium and manganese toxicity on legume growth. In: Andrews CS, Kamprath EJ (eds) Mineral nutrition of legumes in tropical and subtropical soils. CSIRO, Melbourne, pp 207–231

    Google Scholar 

  • Helyar KR, Anderson A J (1970) Some effects of the soil pH on different species and on the soil solution for a soil high in exchangeable aluminium. Proc XI Int Grassland Congr, Surfer’s Paradise, Queensland University. Queensland Press, Brisbane, pp 431–434

    Google Scholar 

  • Hill PR, Alrichs JL, Ejeta G (1989) Rapid evaluation of sorghum for aluminium tolerance. Plant Soil 114: 85–90Hoffer GN, Carr RH (1923) Accumulation of aluminium and iron compounds in corn plants and its probable relation to root rots. J Agric Res 23: 801–824

    Google Scholar 

  • Horst WJ (1987) Aluminium tolerance and calcium efficiency in cowpea genotypes. J Plant Nutr 10: 1121–1129

    CAS  Google Scholar 

  • Howeler RH, Cadavid LF (1976) Screening for rice cultivars for tolerance to aluminium toxicity in nutrient solutions compared with a field screening method. Agron J 68: 551–555

    CAS  Google Scholar 

  • Humphreys MO, Nicholls MK (1984) Relationships between tolerance to heavy metals in Agrostis capillaris L. (A. tenuis Sibth.) New Phytol 98: 177–190

    Google Scholar 

  • Ingram C (1987) The evolutionary basis of ecological amplitude of plant species. PhD Thesis, University of Liverpool, Liverpool Ingrouille MJ, Smirnoff N (1986) Thalaspi caerulescens J & C Presl (T. alpestre L.) in Britain. New Phytol 102: 219–233

    Google Scholar 

  • Ittu G, Saulescu NN (1988) Ameliorarea tolerantei la toxicitatea de alumini la triticale. Probl Gen Teor si Aplic 20: 67–74

    Google Scholar 

  • Jowett D (1958) Populations of Agrostis spp tolerant to heavy metals. Nature 182: 816–817

    Google Scholar 

  • Kerridge PC, Kronstad WE (1968) Evidence of genetic resistance to aluminium toxicity in wheat (Triticum aestivum Vill. Host ). Agron J 60: 710–711

    Google Scholar 

  • Kruckeberg AR (1984) California serpentines. University of California Press, Berkeley

    Google Scholar 

  • Lafever HN, Campbell LG (1978) Inheritance of aluminium tolerance in wheat. Can J Genet Cytol 20: 355–364

    CAS  Google Scholar 

  • Lawrence MJ (1984) The genetic analysis of ecological traits. In: Shorrocks B (ed) Evolutionary ecology. Blackwell, London pp 27–64

    Google Scholar 

  • Lefebvre C (1967) Etude de la position des populations d’Armeria calaminaires de Belgique et des environs d’Aix la Chapelle par rapport a des types alpines et maritimes d’Armeria maritima (Mill) Willd. Bull Soc R Bot Belg 100: 231–239

    Google Scholar 

  • Lefebvre C (1968) Note sur un indice de tolerance chez des populations d’Armeria maritima (Mill) Willd. Bull Soc R Bot Belg 102: 5

    Google Scholar 

  • Lerner IM (1958) The genetic basis of selection. Wiley, New York Little R (1988) Plant soil interaction at low pH. Problem solving–the genetic approach. Commun Soil Sci Plant Anal 19: 1239–1257

    Google Scholar 

  • MacLean A A, Chiasson TC (1966) Differential performance of two barley cultivars to varying aluminium concentrations. Can J Soil Sci 46: 147–153

    Google Scholar 

  • Macnair MR (1989) The genetics of metal tolerance in natural populations. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, pp 235–253

    Google Scholar 

  • Magnavaca R, Gardner GO, Clark RB (1987a) Evaluation of inbred maize lines for aluminium tolerance in nutrient solution. In: Gabelman HW, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Nijhoff, Dordrecht, pp 255–265

    Google Scholar 

  • Magnavaca R, Gardner GO, Clark RB (1987b) Inheritance of aluminium tolerance in maize. In: Gabelman HW, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Nijhoff, Dordrecht, pp 201–212

    Google Scholar 

  • Martini J A, Kochann RA, Gomes EP, Langer F (1977) Response of wheat cultivars to liming in some acid high aluminium oxisols of Rio Grande del Sol, Brazil. Agron J 69: 612–616

    Google Scholar 

  • Mather K (1960) Evolution in polygenic systems. Evol e Genetica, Acad Nazi Lincei, Rome, pp 131–152

    Google Scholar 

  • Mather K (1966) Variability and selection. Proc R Soc Lond Ser B 164: 328–340

    CAS  Google Scholar 

  • Mather K (1973) Genetical structure of populations. Chapman and Hall, London

    Google Scholar 

  • McLean A A, Gilbert BE (1927) The relative aluminium tolerance of crop plants. Soil Sci 24: 163–174

    CAS  Google Scholar 

  • McNeilly T (1968) Evolution in closely adjacent populations III Agrostis tenuis on a small copper mine. Heredity 23: 99–108

    Google Scholar 

  • McNeilly T (1982) A rapid method for screening barley for aluminium tolerance. Euphytica 31: 237–239

    CAS  Google Scholar 

  • Moore DP, Kronstad WE, Metzger RJ (1976) Screening for aluminium tolerance. In: Wright MJ (ed) Plant adaptation to mineral stress in problem soils. Cornell University Press, Ithaca, NY, p 287

    Google Scholar 

  • Morrey DR, Blackwill K, Blackwill MJ (1989) Studies on serpentine flora: Preliminary analyses of soils and vegetation associated with serpentine rock formations in the South–Eastern Transvaal. S Afr J Bot 55: 171–177

    Google Scholar 

  • Naspolini V, Bahia AFC, Viana RT, Gama EFG (1981) Performance of inbreds and single crosses in corn in soils under cerrado vegetation. Cienc Cult 33: 722–727

    Google Scholar 

  • Neeling AJ de, Ernst WHO (1986) Response of an acidic and a calcareous population of Chamaenerion angustifolium ( L.) to iron, manganese and aluminium. Flora 178: 85–92

    Google Scholar 

  • Nicholls MK (1977) Ecological genetics of copper tolerance in Agrostis tenuis Sibth. PhD Thesis, University of Liverpool, Liverpool

    Google Scholar 

  • Ouelette CJ, Dessereaux L (1958) Chemical composition of alfalfa as related to degree of tolerance to manganese and aluminium. Can J Plant Sci 38: 206–214

    Google Scholar 

  • Pegtel DM (1986) Responses of plants to aluminium, manganese, and iron, with particular reference to Succisa pratensis Moench. Plant Soil 93: 43–55

    CAS  Google Scholar 

  • Pitta GVE, Trevisian WL, Schaffert RE, de Franca GE, Bahia AFC (1976) Evaluation of Sorghum lines under high acidity conditions. In: Geres GC (ed) Proc Xlth Brazilian Maize Sorghum Rev, Piracicaba, Brazil pp 553–557

    Google Scholar 

  • Pitta GVE, Schaffert RE, Borgonovi RA, Vasconsellos CA, Bahia AFC, Oliviera AC (1979) Evaluation of sorghum lines to high soil acidity conditions. In: dos Santos AF (ed) Proc Xllth Brazilian Corn Sorghum Res Conf, Gioana, Brazil, p 217

    Google Scholar 

  • Polle E, Konsak CF, Kittrick JA (1978) Visual detection of aluminium tolerance levels in wheat by haematoxylin staining of seedling roots. Crop Sci 18: 823–827

    CAS  Google Scholar 

  • Poison DE, Adams MW (1970) Differential response of navy beans (Phaseolus vulgaris) to zinc. Differential growth and elemental composition at excessive zinc levels. Agron J 62: 557–560

    Google Scholar 

  • Prat S (1934) Die Erblichkeit der Resistenz gegen Kupfer. Ber Dtsch Bot Ges 102: 65–67

    Google Scholar 

  • Ramarkrishnan PS (1968) Nutritional requirements of the edaphic ecotypes of Melilotus alba Medic. II Aluminium and manganese. New Phytol 67: 301–308

    Google Scholar 

  • Ramarkrishnan PS (1969) Nutritional factors influencing the distribution of the calcareous and acidic populations in Hypericum perforatum. Can J Bot 47: 175–181

    Google Scholar 

  • Rechcigl JE, Reneau RB, Zelazny LW (1988) Soil solution aluminium as a measure of aluminium toxicity to alfalfa in acid soils. Commun Soil Sci Plant Anal 19: 989–1001

    CAS  Google Scholar 

  • Reid DA (1976) Genetic potential for solving problems of soil mineral stress: Aluminium and manganese tolerances in the cereal grains. In: Wright MJ (ed) Plant adaptation to mineral stress in problem soils. Cornell University Press, Ithaca, NY, pp 55–64

    Google Scholar 

  • Reid DA, Slootmaker La, Craddock JC (1980) Registration of Composite Cross XXXIV. Crop Sci 20: 416–417

    Google Scholar 

  • Repp G (1963) Die Kupferresistenz des Protoplasmas hoherer Pflanzen auf Kupfererzbo- den. Protoplasma 57: 643–659

    CAS  Google Scholar 

  • Rhue RD, Grogan CO (1977) Screening corn for aluminium tolerance using different calcium and magnesium concentrations. Agron J 69: 775–760

    Google Scholar 

  • Rhue RD, Grogan CO, Stockmeyer EW, Everett HL (1978) Genetic control of aluminium tolerance in corn. Crop Sci 18: 1063–1067

    Google Scholar 

  • Richards RA (1983) Should selection for yield in saline regions be made on saline or non- saline soils? Euphytica 32: 431–438

    Google Scholar 

  • Richards RA, Dennett CW (1980) Variation in salt concentration in a wheat field. University of California Cooperative Extension. Soil Water 44: 8–9

    Google Scholar 

  • Robinson NJ (1989) Metal binding polypeptides in plants. In: Shaw A J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, pp 195–214

    Google Scholar 

  • Rorison IH (1960) Some experimental aspects of the calcicole-calcifuge problem II. The effects of mineral nutrition on seedling growth in nutrient solution. J Ecol 48: 679–688

    Google Scholar 

  • Rorison IH (1969) Ecological inferences from laboratory experiments on mineral nutrition. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford, pp 155–175

    Google Scholar 

  • Salisbury PA, Downes RW (1982) Breeding lucerne for tolerance to acid soils. In: Yates JJ (ed) Proc 2nd Aust Agron Conf, Wagga, NSW, Australian Society for Agronomy, Parkville, Victoria, pp 339–346

    Google Scholar 

  • Schat H, Bookum WM (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68: 219–229

    CAS  Google Scholar 

  • Scott BJ, Fisher J A (1989) Selection of genotypes tolerant of aluminium and manganese. In: Robson AD (ed) Soil acidity and plant growth. Academic Press, Mattickville, Australia, pp 167–203

    Google Scholar 

  • Scott BJ, Burke DR, Bostrom TE (1987) Australian research on tolerance to toxic manganese. In: Gabelmann HW, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Nijhof, Dordrecht, pp 153–163

    Google Scholar 

  • Silva AR da (1976) Application of the plant genetic approach to wheat culture in Brazil. In: Wright EJ (ed) Plant adaptation to mineral stress in problem soils. Cornell University Press, Ithaca, NY, pp 223–231

    Google Scholar 

  • Stolen O, Anderson S (1978) Inheritance of tolerance to low soil pH in barley. Hereditas 88: 101–105

    Google Scholar 

  • Symeonidis L, McNeilly T, Bradshaw AD (1985) Interpopulation variation in tolerance to cadmium, copper, lead, nickel, and zinc in nine populations of Agrostis capillaris ( L. ). New Phytol 101: 317–324

    Google Scholar 

  • Tagaki H, Namai H, Murakami K (1983) Exploration of aluminium tolerant genes in wheat. Proc 6th Int Wheat Genetics Symp. Maruzen, Kyoto, Japan, p 143

    Google Scholar 

  • Taylor GJ (1988) The physiology of aluminium tolerance in higher plants. Commun Soil Sci Plant Anal 19: 1179–1194

    CAS  Google Scholar 

  • Thompson J (1987) Population biology of Anthoxanthum odoratum, Plantago lanceolata, and Rumex acetosa on zinc and lead mine spoil. PhD Thesis, University of Liverpool, Liverpool

    Google Scholar 

  • Verkleij JAK Schat H (1989) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, pp 179–193

    Google Scholar 

  • Vose PB, Jones DG (1963) The interaction of manganese and calcium on nodulation and growth in three varieties of Trifolium repens. Plant Soil 18: 372–385

    CAS  Google Scholar 

  • Wachsmann C (1961) Wasserkultur zur Wirkung von Blei, Kupfer und Zink auf die Gartenform und Schwermetallbiotypen von Silene inflata. Thesis, University of Miinster, Miinster

    Google Scholar 

  • Walley Ka, Khan MS, Bradshaw AD (1974) The potential for evolution of heavy metal tolerance in plants I. Copper and zinc tolerance in Agrostis tenuis. Heredity 32: 309–319

    Google Scholar 

  • Walsh LM, Steevens DR, Siebel HD, Weis GE (1972) Effect of high rates of zinc on several crops grown on an irrigated plainfield sand. Commun Soil Sci Plant Anal 3: 187–195

    CAS  Google Scholar 

  • White MC, Decker AM, Chaney RL (1979) Differential cultivar tolerance in soybean tosoil zinc I. Range of cultivar response. Crop Sci 71: 121–125

    Google Scholar 

  • Wild H (1964) The endemic species of the Chimanimani Mountains and their significance. Kirkia 4: 125–157

    Google Scholar 

  • Wild H (1965) The flora of the Great Dyke of Southern Rhodesia with special reference to the serpentine soils. Kirkia 5: 49–86

    Google Scholar 

  • Wild H, Bradshaw AD (1977) The evolutionary effects of metalliferous and other anomalous soils in south central Africa. Evolution 31: 282–293

    Google Scholar 

  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 180: 37–38

    CAS  Google Scholar 

  • Wilkins DA (1960) The measurement and genetic analysis of lead tolerance in Festuca ovina. Ann Rep Scott Plant Breed Stn 1960: 85–98

    Google Scholar 

  • Williams CH (1980) Soil acidification under clover pasture. Aust J Exp Agric Anim Husb 20: 561–567

    Google Scholar 

  • Woolhouse H (1983) Toxicity and tolerance in the response of plants to metals. In: Lange OL, Nobel PS, Osman CB, Ziegler H (eds) Physiological plant ecology. III. Response to the chemical and biological environment. Springer Berlin, Heidelberg New York, p 254

    Google Scholar 

  • Wright MJ (1976) Plant adaptation to mineral stress in problem soils. Cornell University Press, Ithaca, NY, 420 pp

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McNeilly, T. (1994). Metal Toxicity. In: Yeo, A.R., Flowers, T.J. (eds) Soil Mineral Stresses. Monographs on Theoretical and Applied Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84289-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84289-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84291-7

  • Online ISBN: 978-3-642-84289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics