Advertisement

The Spectrum of Cellular Inertia Waves Under Unstable Forced Combustion Conditions

  • S. U. Schöffel
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 48)

Abstract

Hydrogen as an alternative fuel in propulsion systems is gaining in importance compared with the usual fossile sources of energy. Under unstable operating conditions combustion instabilities in forced thrust chambers of jet airplanes or shuttle aircraft can give rise to high-amplitude pressure waves.

Keywords

Detonation Wave Gaseous Detonation Combustion Instability Thrust Chamber Detonation Cell Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Berman, M.: A Critical Review on Recent Large-Scale Experiments on Hydrogen — Air Detonations, ANS Proc. of the 23rd ASME / AICHe/ ANS Nat. Heat Transfer Conference, Denver, Col., Aug. 4–7 (1985).Google Scholar
  2. [2]
    Strehlow, R.A.: Fundamentals of Combustion, Huntington, N.Y. (1979).Google Scholar
  3. [3]
    Lee, J.H.: Dynamic Parameters of Gaseous Detonations, Ann. Rev. Fluid Mech. 16, 311–336 (1984).ADSCrossRefGoogle Scholar
  4. [4]
    Oppenheim, A.K. & Laderman, A.J.: Role of Detonation in Combustion Instability, Proc. of the 1st. ICRPG Combustion Instability Conference, vol. I, Appl. Phys. Lab. (1965), pp. 275-297.Google Scholar
  5. [5]
    Oppenheim, A.K., Manson, N. & Wagner, H. Gg.: Recent Progress in Detonation Research, AIAA J. 1, 2243–2252 (1963).CrossRefGoogle Scholar
  6. [6]
    Prandtl, L., Oswatitsch, K. & Wieghardt, K.: Führer durch die Strömungslehre, 8. Auflage, Vieweg — Verlag (1984), Kap. 3.15: Verbrennung, Detonation, S. 155-157 (in Kap. 3: Strömungen mit erheblichen Dichteänderungen (Gasdynamik)).Google Scholar
  7. [7]
    BartlmÄ, F.: Gasdynamik der Verbrennung, Springer-Verlag (1975).Google Scholar
  8. [8]
    Shepherd, J.E.: Chemical Kinetics of Hydrogen — Air Diluent Detonations, in: Dynamics of Explosions, vol. 106 of: Progress in Astronautics and Aeronautics Series (1986), ed.: Bowen, J.R., Leyer, J.-C. & Soloukhin, R.I.Google Scholar
  9. [9]
    Bjerknes, V., Bjerknes, J., Solberg, H. & Bergeron, T.: Physikalische Hydrodynamik, Berlin (1933).Google Scholar
  10. [10]
    Strehlow, R.A., Adamczyk, A.A. & Stiles, R.J.: Transient Studies of Detonation Waves, Astron. Acta 17, 509–527 (1972).Google Scholar
  11. [11]
    Schlichting, H.: Grenzschichttheorie, Verlag G. Braun, Karlsruhe (1982).Google Scholar
  12. [12]
    Schöffel, S.: Berechnung der Dynamik zellularer Detonationsstrukturen ausgehend vom Zel’dovich — Döring — v.Neumann — Modell, Dissertation, Universität Kaiserslautern (1987), Fortschritts — Berichte VDI, Reihe 7, Nr. 142, VDI-Verlag, 212 S. (1988).Google Scholar
  13. [13]
    Schöffel, S., Ebert, F.: A Numerical Investigation of the Reestablishment of a Quenched Gaseous Detonation in a Galilei-Transformed System, in: Proc. of 16th. Internat. Sympos. on Shock Tubes & Waves, Aachen, FRG, July 26–30 (1987), ed.: H. Grönig, VCH Verlagsgesellschaft, Weinheim (1988), pp. 779-786.Google Scholar
  14. [14]
    Schöffel, S.: Nonlinear Resonance Phenomena for the Euler — Equations Coupled with Chemical Reaction Kinetics, Proceedings of the 2nd. Intern. Confer, on Nonlinear Hyperbolic Problems, Aachen, FRG, March 14–18 (1988), Notes on Numerical Fluid Mechanics, vol. 24 (Vieweg, Braunschweig 1989), eds.: J. Ballmann, R. Jeltsch.Google Scholar
  15. [15]
    Schöffel, S.: Tracking of Double-Helical Wave Motion in Supersonic Reacting Channel Flow, Finite Approximations in Fluid Mechanics II, DFG Priority Research Programme, Results 1986–1988, Notes on Numerical Fluid Mechanics, vol. 25 (Vieweg, Braunschweig, 1989), pp. 351-365, ed.: E. H. Hirschel.Google Scholar
  16. [16]
    Schöffel, S., Ebert, F.: Numerical Analyses Concerning the Spatial Dynamics of an Initially Plane Gaseous ZDN Detonation, Proc. of Intern. Colloq. on the Dynamics of Explosions and Reactive Systems, Warsaw, Poland, Aug. 3–7 (1987), AIAA Progress in Astronautics and Aeronautics, vol. 114, chapt. I: Gaseous Detonations, pp. 3-31, ed.: A.L. Kuhl, J.R. Bowen, J.-C. Leyer & A. Borisov(1988).Google Scholar
  17. [17]
    Wang, Y.-Y., Fujiwara, T., Aoki, T., Arakawa, II. & Ishiguro, T.: Three-Dimensional Standing Oblique Detonation Wave in a Hypersonic Flow, AIAA — paper 88-0478, AIAA 26th Aerospace Sciences Meeting, Jan. 11–14, Reno, Nevada (1988).Google Scholar
  18. [18]
    Kepler, J.: Weltharmonik, Übers. M. Caspar, Oldenbourg — Verlag, München (1982).Google Scholar
  19. [19]
    Kaiser, W.: Über die Verhältniszahl des Goldenen Schnittes und die Reihe der mit ihr zusammenhängenden ganzen Zahlen und eine aus dieser abgeleitete Reihe, Verlag Teubner (1929).Google Scholar
  20. [20]
    Birkhoff, G.A.: Numerical Fluid Dynamics, SIAM Rev. 25, 1–34 (1983).CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    Mach, E.: Einführung in die Helmholtz’sche Musiktheorie, Sändig — Reprint Verlag (1985).Google Scholar
  22. [22]
    Helmholtz, H: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik, Braunschweig (1863), reprinted in English: On the Sensations of Tone, Dover Publications (1954).Google Scholar
  23. [23]
    Korobeinikov, V.P., Levin, V.A., Markov, V.V. & Chernyi, G.G.: Propagation of Blast Wave in a Combustible Gas, Astronaut. Acta 17, 529–537 (1972).Google Scholar
  24. [24]
    Pusch, W. & Wagner, H.Gg.: Investigation of the Dependence of the Limits of Dclonalability on Tube Diameter, Combustion & Flame, 6, 157–162 (1962).CrossRefGoogle Scholar
  25. [25]
    Berthold, W. & Löffler, U.: Lexikon sicherheitstechnischer Begriffe in der Chemie, Verlag Chemie, Weinheim (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • S. U. Schöffel
    • 1
  1. 1.Mechanische Verfahrenstechnik und Strömungsmechanik, Fachbereich MaschinenwesenUniversität KaiserslauternKaiserslauternFed. Rep. of Germany

Personalised recommendations