Skip to main content

The Spectrum of Cellular Inertia Waves Under Unstable Forced Combustion Conditions

  • Conference paper
  • 129 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 48))

Abstract

Hydrogen as an alternative fuel in propulsion systems is gaining in importance compared with the usual fossile sources of energy. Under unstable operating conditions combustion instabilities in forced thrust chambers of jet airplanes or shuttle aircraft can give rise to high-amplitude pressure waves.

Dedicated to Prof. Dr. H. G. Hahn, Institute of Technical Mechanics at Universität Kaiserslautern on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Berman, M.: A Critical Review on Recent Large-Scale Experiments on Hydrogen — Air Detonations, ANS Proc. of the 23rd ASME / AICHe/ ANS Nat. Heat Transfer Conference, Denver, Col., Aug. 4–7 (1985).

    Google Scholar 

  2. Strehlow, R.A.: Fundamentals of Combustion, Huntington, N.Y. (1979).

    Google Scholar 

  3. Lee, J.H.: Dynamic Parameters of Gaseous Detonations, Ann. Rev. Fluid Mech. 16, 311–336 (1984).

    Article  ADS  Google Scholar 

  4. Oppenheim, A.K. & Laderman, A.J.: Role of Detonation in Combustion Instability, Proc. of the 1st. ICRPG Combustion Instability Conference, vol. I, Appl. Phys. Lab. (1965), pp. 275-297.

    Google Scholar 

  5. Oppenheim, A.K., Manson, N. & Wagner, H. Gg.: Recent Progress in Detonation Research, AIAA J. 1, 2243–2252 (1963).

    Article  Google Scholar 

  6. Prandtl, L., Oswatitsch, K. & Wieghardt, K.: Führer durch die Strömungslehre, 8. Auflage, Vieweg — Verlag (1984), Kap. 3.15: Verbrennung, Detonation, S. 155-157 (in Kap. 3: Strömungen mit erheblichen Dichteänderungen (Gasdynamik)).

    Google Scholar 

  7. BartlmÄ, F.: Gasdynamik der Verbrennung, Springer-Verlag (1975).

    Google Scholar 

  8. Shepherd, J.E.: Chemical Kinetics of Hydrogen — Air Diluent Detonations, in: Dynamics of Explosions, vol. 106 of: Progress in Astronautics and Aeronautics Series (1986), ed.: Bowen, J.R., Leyer, J.-C. & Soloukhin, R.I.

    Google Scholar 

  9. Bjerknes, V., Bjerknes, J., Solberg, H. & Bergeron, T.: Physikalische Hydrodynamik, Berlin (1933).

    Google Scholar 

  10. Strehlow, R.A., Adamczyk, A.A. & Stiles, R.J.: Transient Studies of Detonation Waves, Astron. Acta 17, 509–527 (1972).

    Google Scholar 

  11. Schlichting, H.: Grenzschichttheorie, Verlag G. Braun, Karlsruhe (1982).

    Google Scholar 

  12. Schöffel, S.: Berechnung der Dynamik zellularer Detonationsstrukturen ausgehend vom Zel’dovich — Döring — v.Neumann — Modell, Dissertation, Universität Kaiserslautern (1987), Fortschritts — Berichte VDI, Reihe 7, Nr. 142, VDI-Verlag, 212 S. (1988).

    Google Scholar 

  13. Schöffel, S., Ebert, F.: A Numerical Investigation of the Reestablishment of a Quenched Gaseous Detonation in a Galilei-Transformed System, in: Proc. of 16th. Internat. Sympos. on Shock Tubes & Waves, Aachen, FRG, July 26–30 (1987), ed.: H. Grönig, VCH Verlagsgesellschaft, Weinheim (1988), pp. 779-786.

    Google Scholar 

  14. Schöffel, S.: Nonlinear Resonance Phenomena for the Euler — Equations Coupled with Chemical Reaction Kinetics, Proceedings of the 2nd. Intern. Confer, on Nonlinear Hyperbolic Problems, Aachen, FRG, March 14–18 (1988), Notes on Numerical Fluid Mechanics, vol. 24 (Vieweg, Braunschweig 1989), eds.: J. Ballmann, R. Jeltsch.

    Google Scholar 

  15. Schöffel, S.: Tracking of Double-Helical Wave Motion in Supersonic Reacting Channel Flow, Finite Approximations in Fluid Mechanics II, DFG Priority Research Programme, Results 1986–1988, Notes on Numerical Fluid Mechanics, vol. 25 (Vieweg, Braunschweig, 1989), pp. 351-365, ed.: E. H. Hirschel.

    Google Scholar 

  16. Schöffel, S., Ebert, F.: Numerical Analyses Concerning the Spatial Dynamics of an Initially Plane Gaseous ZDN Detonation, Proc. of Intern. Colloq. on the Dynamics of Explosions and Reactive Systems, Warsaw, Poland, Aug. 3–7 (1987), AIAA Progress in Astronautics and Aeronautics, vol. 114, chapt. I: Gaseous Detonations, pp. 3-31, ed.: A.L. Kuhl, J.R. Bowen, J.-C. Leyer & A. Borisov(1988).

    Google Scholar 

  17. Wang, Y.-Y., Fujiwara, T., Aoki, T., Arakawa, II. & Ishiguro, T.: Three-Dimensional Standing Oblique Detonation Wave in a Hypersonic Flow, AIAA — paper 88-0478, AIAA 26th Aerospace Sciences Meeting, Jan. 11–14, Reno, Nevada (1988).

    Google Scholar 

  18. Kepler, J.: Weltharmonik, Übers. M. Caspar, Oldenbourg — Verlag, München (1982).

    Google Scholar 

  19. Kaiser, W.: Über die Verhältniszahl des Goldenen Schnittes und die Reihe der mit ihr zusammenhängenden ganzen Zahlen und eine aus dieser abgeleitete Reihe, Verlag Teubner (1929).

    Google Scholar 

  20. Birkhoff, G.A.: Numerical Fluid Dynamics, SIAM Rev. 25, 1–34 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  21. Mach, E.: Einführung in die Helmholtz’sche Musiktheorie, Sändig — Reprint Verlag (1985).

    Google Scholar 

  22. Helmholtz, H: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik, Braunschweig (1863), reprinted in English: On the Sensations of Tone, Dover Publications (1954).

    Google Scholar 

  23. Korobeinikov, V.P., Levin, V.A., Markov, V.V. & Chernyi, G.G.: Propagation of Blast Wave in a Combustible Gas, Astronaut. Acta 17, 529–537 (1972).

    Google Scholar 

  24. Pusch, W. & Wagner, H.Gg.: Investigation of the Dependence of the Limits of Dclonalability on Tube Diameter, Combustion & Flame, 6, 157–162 (1962).

    Article  Google Scholar 

  25. Berthold, W. & Löffler, U.: Lexikon sicherheitstechnischer Begriffe in der Chemie, Verlag Chemie, Weinheim (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Schöffel, S.U. (1990). The Spectrum of Cellular Inertia Waves Under Unstable Forced Combustion Conditions. In: Meinköhn, D. (eds) Dissipative Structures in Transport Processes and Combustion. Springer Series in Synergetics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84230-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84230-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84232-0

  • Online ISBN: 978-3-642-84230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics