Skip to main content

Catastrophe Theory Concepts for Ignition/Extinction Phenomena

  • Conference paper
Dissipative Structures in Transport Processes and Combustion

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 48))

Abstract

This investigation centers on a class of semi-linear elliptic boundary value problems which are to model the physical behaviour of certain stationary reaction-diffusion systems for which ignition and extinction is known to occur. It is shown that the solutions may be represented by the points of a state surface in an appropriate finite-dimensional state space and hence may be classified according to the concepts of Catastrophe Theory via an investigation of the projection image of the state surface in a subspace spanned by the control parameters which form a subset of the state variables. Due to the existence of a distinguished control parameter (which is designated by λ and is known as the “Frank-Kamenetzkiparameter”), the state surface is given by an explicit expression for λ in terms of the cther state variables. With the help of the maximum principle for elliptic differential equations another surface is shown to exist which — in terms of λ — bounds the state surface from below. For this bounding surface, the projection image in the subspace of the control parameters furnishes a bifurcation set which provides lower bounds for the associated critical singularities of the exact problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Gilmore, Nucl.Phys.B (Proc.Suppl.) 2, 191(1987).

    Article  Google Scholar 

  2. W. Güttinger, p.23 in “Structural Stability in Physics”, W. Güttinger and H. Eikemeier (Eds.), Springer Ser.Synergetics Vol.4 (1979).

    Google Scholar 

  3. M.M. Vajnberg, W.A. Trenogin, “Theory of Branching Solutions of Non-Linear Equations”, Noordhoff, Leyden (1974).

    Google Scholar 

  4. R. Magnus, T. Poston, p.63 in “Structural Stability in Physics”, W.Güttinger and H. Eikemeier (Eds.), Springer Ser. Synergetics Vol.4 (1979).

    Google Scholar 

  5. R. Seydel, V. Hlavacek, Chem.Eng.Sci. 42, 1281(1987).

    Google Scholar 

  6. R. Aris, “The Mathematical Theory of Diffusion and Reaction”, Clarendon Press, Oxford (1975).

    Google Scholar 

  7. A. Friedman, “Partial Differential Equations of Parabolic type”, Prentice Hall, Englewood Cliffs (1964).

    MATH  Google Scholar 

  8. I.M. Gelfand, Am.Math.Soc.Translations, Ser.2, 29, 295 (1963).

    Google Scholar 

  9. P.L. Lions, SIAM-Rev. 24, 441(1982).

    Article  Google Scholar 

  10. W.-M. Ni, L.A. Peletier, J. Serrin (Eds.), “Nonlinear Diffusion Equations and their Equilibrium States”, Springer, Berlin (1988).

    Google Scholar 

  11. D.D. Joseph, E.M. Sparrow, Quart. J. Appl. Math. 28, 329 (1970).

    MathSciNet  Google Scholar 

  12. H.B. Keller, p.359 in “Applications of Bifurcation Theory”, P.H. Rabinowitz (Ed.), Academic Press, London (1977).

    Google Scholar 

  13. D.A. Frank-Kamenetzkii,“Diffusion and Heat Transfer in Chemical Kinetics”, Plenum Press, New York (1969).

    Google Scholar 

  14. D.H. Sattinger,“Topics in Stability and Bifurcation Theory”, Lecture Notes in Mathematics No.309, Springer, Berlin (1973).

    Google Scholar 

  15. D. Meinköhn, J. Chem. Phys. 74, 3603 (1981).

    Article  ADS  Google Scholar 

  16. G. Nicolis, I. Prigogine,“Self-Organization in Nonequilibrium Systems”, Wiley, New York (1977).

    MATH  Google Scholar 

  17. L.F. Razon, R.A. Schmitz, Chem.Eng.Sci. 42, 1005 (1987).

    Article  Google Scholar 

  18. D. Meinköhn, SIAM-J. Appl. Math. 48, 536 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. D. Meinköhn, SIAM-J. Appl. Math. 48, 792 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Gidas, W.-M. Ni, L. Nirenberg, Comm.Math.Phys. 68, 209 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. D. Meinköhn, Chem.Eng.Sci., in press.

    Google Scholar 

  22. D. Meinköhn, Int.J. Heat Mass Transfer 23, 833 (1980).

    Article  MATH  Google Scholar 

  23. W. Börsch-Supan, J. Appl. Math. Phys. 35, 332 (1984).

    Article  MATH  Google Scholar 

  24. L.D. Landau, E.M. Lifshits, “Statistical Physics”, Pergamon, Oxford (1980).

    Google Scholar 

  25. D. Meinköhn, in:“Nonlinear Wave Processes in Excitable Media”, A.V. Holden, M. Markus, H.G. Othmer (Eds.), Plenum Press, in preparation.

    Google Scholar 

  26. K.H. Winters, K.A. Cliffe, Comb.Flame 62, 13 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Meinköhn, D. (1990). Catastrophe Theory Concepts for Ignition/Extinction Phenomena. In: Meinköhn, D. (eds) Dissipative Structures in Transport Processes and Combustion. Springer Series in Synergetics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84230-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84230-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84232-0

  • Online ISBN: 978-3-642-84230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics