Isotropic Automata for Simulations of Excitable Media: Periodicity, Chaos and Reorganization

  • M. Markus
  • B. Hess
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 48)


Cellular automata have been used for the simulation of excitable media as an efficient alternative to partial differential equations. However, the automata proposed so far are anisotropic since the shapes of the propagating waves are related to the shapes of the cells (e.g. squares or hexagons). This problem is solved in the present work by automata based on a random distribution of excitable elements. Using a (minimal) model with only three parameters, the following results are obtained, in good agreement with experiments: periodic patterns in two dimensions (target patterns and spirals) and three dimensions (scroll waves), eikonal relationships (normal velocities as functions of the curvature of the wavefront), spatiotemporal chaos for spatially periodic inhomo-geneities, reorganization after suppression of these inhomogeneities. An extension of the model including two more parameters yields a dispersion relation comparable to that obtained from measurements and from an analysis of the relevant partial differential equations.


Cellular Automaton Excitable Medium Spiral Wave Excited Cell Refractory State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.S. Zykov: Simulations of Wave Processes in Excitable Media (Manchester Univ. Press, 1988).Google Scholar
  2. 2.
    J.J. Tyson and J.P. Keener: Physica D32, 327 (1988).ADSMathSciNetGoogle Scholar
  3. 3.
    A.V. Holden, M. Markus and H.G. Othmer (Eds.): Nonlinear Wave Processes in Excitable Media (Plenum Press, London), in press.Google Scholar
  4. 4.
    A.L. Hodgkin and A.F. Huxley: J. Physiol. 117, 500 (1952).Google Scholar
  5. 5.
    K. Hara, P. Tydeman and M. Kirschner: Proc. Natl. Acad. Sci. USA 77, 462 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    N.A. Gorelova and J. Bures: J. Neurobiol. 14, 353 (1983).CrossRefGoogle Scholar
  7. 7.
    V.I. Koroleva and J. Bures: Brain. Res. 173, 209 (1979).CrossRefGoogle Scholar
  8. 8.
    M. Shibata and J. Bures: J. Neurobiol. 5, 107 (1974).CrossRefGoogle Scholar
  9. 9.
    M.A. Allessie, F.I.M. Bonke and F.J.G. Schopman: Circ. Res. 33, 54 (1973).CrossRefGoogle Scholar
  10. 10.
    M.A. Allessie, F.I.M. Bonke and F.J.G. Schopman: Circ. Res. 39, 168 (1976).CrossRefGoogle Scholar
  11. 11.
    M.A. Allessie, F.I.M. Bonke and F.J.G. Schopman: Circ. Res. 41, 9 (1977).CrossRefGoogle Scholar
  12. 12.
    M.J. Janse, F.J.L. van Capelle, H. Morsing, A.G. Kléber, F. Wilms-Schopman, R. Cardinal, C. Naumann D’Alnoncourt, D. Dürrer: Circ. Res. 47, 151 (1980).CrossRefGoogle Scholar
  13. 13.
    A.T. Winfree: J. Theor. Biol. 138, 353 (1989).CrossRefMathSciNetGoogle Scholar
  14. 14.
    G. Gerisch: Naturwissenschaften 58, 430 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    A.J. Durston: J. Theor. Biol. 42, 483 (1973).CrossRefGoogle Scholar
  16. 16.
    K.J. Tomchik and P.N. Devreotes: Science 212, 443 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    P.C. Newell: in Fungal Differentiation: A Contemporary Synthesis. Micology Series 43, ed. by J.E. Smith (Marcel Dekker, New-York, 1983) p. 43.Google Scholar
  18. 18.
    F. Siegert and C. Weijer: J. Cel. Sci. 93, 315 (1989).Google Scholar
  19. 19.
    P. Foerster, S.C. Müller and B. Hess: Development, in press.Google Scholar
  20. 20.
    A.B. Carey, R.H. Giles Jr. and R.G. McLean: Am. Trop. Med. Hyg. 27, 573 (1978).Google Scholar
  21. 21.
    J.D. Murray, E.A. Stanley and D.L. Brown: Proc. Roy. Soc. Lond. B229, 111 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    J.D. Murray: Am. Scientist 75, 280 (1987).ADSGoogle Scholar
  23. 23.
    A.W.M. Dress, M. Gerhardt and H. Schuster: in From Chemical to Biological Organization, ed. by M. Markus, S.C. Müller and G. Nicolis (Springer-Verlag, Heidelberg, 1988) p. 134.CrossRefGoogle Scholar
  24. 24.
    K.I. Agladze and V.I. Krinsky: Nature 296, 424 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    B.J. Welsh, J. Gomatam and A.E. Burgess: Nature 304, 611 and cover (1983).ADSCrossRefGoogle Scholar
  26. 26.
    A.T. Winfree and S.H. Strogatz: Nature 311, 611 and cover (1984).ADSCrossRefGoogle Scholar
  27. 27.
    J.P. Keener and J.J. Tyson: Physica 21D, 307 (1986).ADSMathSciNetGoogle Scholar
  28. 28.
    S.C. Müller, Th. Plesser and B. Hess: Physica 24D, 71 (1987).ADSGoogle Scholar
  29. 29.
    M. Markus, S.C. Müller, Th. Plesser and B. Hess: Biol. Cybern. 57, 187 (1987).CrossRefGoogle Scholar
  30. 30.
    A. Hanna, A. Saul and K. Showalter: J. Am. Chem. Soc. 104, 3838 (1982).CrossRefGoogle Scholar
  31. 31.
    R.J. Gowland and G. Stedman: J. Chem. Soc.-Chem. Commun. 1983, 1038 (1983).CrossRefGoogle Scholar
  32. 32.
    D.M. Weitz and I.R. Epstein: J. Phys. Chem. 88, 5300 (1984).CrossRefGoogle Scholar
  33. 33.
    G. Basza and I.R. Epstein: J. Phys. Chem. 89, 3050 (1985).CrossRefGoogle Scholar
  34. 34.
    R.J. Field and M. Burger (Eds.): Oscillations and Travelling Waves in Chemical Systems (Wiley, New-York, 1985).Google Scholar
  35. 35.
    B.F. Madore and W.L. Freedman: Science 222, 615 and cover (1983).ADSCrossRefGoogle Scholar
  36. 36.
    L.S. Schulman and P.E. Sciden: Science 233, 425 (1986).ADSCrossRefGoogle Scholar
  37. 37.
    J. Feitzinger: In Nonlinear Wave Phenomena in Excitable Media, ed. by A.V. Holden, M. Markus and H.G. Othmer (Plenum Press, London, 1990).Google Scholar
  38. 38.
    J.L. Martiel and A. Goldbeter: Nature 313, 590 (1985).ADSCrossRefGoogle Scholar
  39. 39.
    N. Wiener and A. Rosenbluth: Arch. Inst. Cardiol. Mexico 16, 205 (1946).MathSciNetGoogle Scholar
  40. 40.
    A.T. Winfree, E.M. Winfree and H. Scifert: Physica 17D, 109 (1985).ADSGoogle Scholar
  41. 41.
    V.S. Zykov and A.S. Mikhailov: Sov. Phys. Doklady 31, 51 (1986).ADSGoogle Scholar
  42. 42.
    A.V. Panfilov and A.T. Winfree: Physica 17D, 323 (1985).ADSMathSciNetGoogle Scholar
  43. 43.
    R. Penrose: Math. Intelligencer 2, 32 (1979).CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    D.R. Nelson and B.I. Halperin: Science 229, 233 (1985).ADSCrossRefGoogle Scholar
  45. 45.
    J. Hardy, Y. Pomeau and O. de Pazzis: J. Math. Phys. 14, 1746 (1973).ADSCrossRefGoogle Scholar
  46. 46.
    U. Frisch, B. Hasslacher and Y. Pomeau: Phys. Rev. Lett. 56, 1505 (1986).ADSCrossRefGoogle Scholar
  47. 47.
    D. d’Humières and P. Lallemand: Europhys. Lett. 2, 291 (1986).CrossRefGoogle Scholar
  48. 48.
    R. Nasilowski, this volume.Google Scholar
  49. 49.
    P. Foerster, S.C. Müller and B. Hess: Science 241, 685 (1988).ADSCrossRefGoogle Scholar
  50. 50.
    C. Kurrer: Diplomarbeit, Technische Universität München (1989).Google Scholar
  51. 51.
    A.B. Medvinsky, A.V. Panfilov and A.M. Pertsov: in Self-Organization. Autowaves and Structures Far from Equilibrium, ed. by V.I. Krinsky (Springer-Verlag, Berlin, 1984) p. 195.CrossRefGoogle Scholar
  52. 52.
    A.L. Goldberger, V. Bhargava, B.J. West and A.J. Mandell: Physica 19D, 282 (1986).ADSMathSciNetGoogle Scholar
  53. 53.
    P. Foerster, S.C. Müller and B. Hess: Proc. Natl. Acad. Sci. USA 86, 6831 (1989).ADSCrossRefGoogle Scholar
  54. 54.
    V.S. Zykov and O.L. Morozova: Biophysics 24, 739 (1980).Google Scholar
  55. 55.
    V.S. Zykov: Biophysics 25, 906 (1980).Google Scholar
  56. 56.
    A. Wolf, J.B. Swift, H.G. Swinney and J.A. Vastano: Physica 16D, 285 (1985).ADSMathSciNetGoogle Scholar
  57. 57.
    A.T. Winfree: Science 181, 937 (1973).ADSCrossRefGoogle Scholar
  58. 58.
    W.D. Hillis and J. Barnes: Nature 326, 27 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • M. Markus
    • 1
  • B. Hess
    • 1
  1. 1.Max-Planck-Institut für ErnährungsphysiologieDortmund 1Fed. Rep. of Germany

Personalised recommendations