Skip to main content

Transcription Factor Regulation In Brain: Focus on Activity and NMDA Dependent Regulation

  • Conference paper
Molecular Mechanisms of Aging

Abstract

Recent studies in invertebrate neurons indicate a role for rapid genomic responses in neurotransmitter induced synaptic plasticity (Montarolo et al. 1986). RNA and protein synthesis also appear critical for certain forms of neural plasticity in vertebrate systems (Agranoff 1989). These studies focus attention on the role of transmitter regulated gene expression in neuroplasticity. Neurotransmitters (Greenberg et al. 1986), growth factors (Lau and Nathans 1985; Milbrandt 1987) and neuroexcitatory stimuli (Morgan et al. 1987) rapidly induce genes that code for transcription regulatory proteins, demonstrating that cellular membrane events can rapidly regulate genomic function. Moreover, because transcription factors bind to DNA and regulate gene expression, these observations suggest that a regulated cascade of genomic events may be important in transmitter induced responses. To assess the postulated role of transcription factors in brain physiology, we have focused on identifying transcription factor genes that are rapidly induced in brain and on examining mechanisms involved in their regulation. We have identified a set of transcription factors that are regulated by synaptic activity and NMDA receptors and therefore may play a role in neuroplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham WC, Mason SE (1988) Effects of the NMDA receptor/channel antagonists CPP and MK-801 on hippocampal field potentials and long-term potentiation in anesthetized rats. Brain Res 462: 40–46

    Article  PubMed  CAS  Google Scholar 

  • Agranoff BW (1980) Biochemical events mediating the formation of short-and long-term memory. In: Tsukuda Y and Agranoff BW (eds) Neurobiological basis of learning and memory, Wiley, New York, p 135–147

    Google Scholar 

  • Aoki CY, Siekevitz P (1985) Ontogenetic changes in the cyclic adenosine 3’, 5’-monophosphate-stimulatable phosphorylation of cat visual cortex proteins, particulary of microtubuleassociated protein 2 (MAP 2): effects of normal and dark rearing and of the exposure to light. J Neurosci 5: 2465–2483

    PubMed  CAS  Google Scholar 

  • Bliss TVP, Lynch MA (1988) Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms. In: Long-term Potentiation from Biophysics to Behavior. Alan R. Liss, Inc., p 3–72

    Google Scholar 

  • Bliss TVP, Goddard GV, Riives M (1983) Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines. J Physiol Lond 334: 475–491

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Christy BA, Lau LF, Nathans D (1988) A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences. Proc Natl Acad Sci USA 85: 7857–7861

    Article  PubMed  CAS  Google Scholar 

  • Christy BA, Nathans D (1989) DNA binding site of the growth factor- inducible protein Zif268. Proc Natl Acad Sci USA 86: 8727–8741

    Article  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d)cyclohepten5,10-imine (MK-801). A substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Devel Res 2: 123–134

    Article  CAS  Google Scholar 

  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476

    Article  PubMed  CAS  Google Scholar 

  • Cynader M, Mitchell DE (1980) Prolonged sensitivity to monocular deprivation in dark-reared cats. J Neurophysiol 43: 1026–1040

    PubMed  CAS  Google Scholar 

  • Daval J-L, Nakajima T, Gleiter CH, Post RM, Marangos PJ (1989) Mouse brain c-fos mRNA distribution following a single electroconvulsive shock. J Neurochem 52: 1954–1957

    Article  PubMed  CAS  Google Scholar 

  • Dolin SJ, Halsey MJ, Little HJ (1986) Calcium channel antagonists decrease the ethanol withdrawal syndrome. Br J Pharmacol 87: 40

    Google Scholar 

  • Dragunow M, Robertson HA (1987) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329: 441–442

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz DW, White F, Steward O, Cotman CW, Lynch GS (1975) Anatomical evidence for a projection from the entorhinal cortex to 75 the contralateral dentate gyrus of the rat. Expl Neurol 47: 433–441

    Article  CAS  Google Scholar 

  • Greenberg ME, Ziff EB, Green LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Hendry SHC, Jones EG (1986) Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 320: 750–753

    Article  PubMed  CAS  Google Scholar 

  • Hendry SHC, Jones EG, Burstein N (1988) Activity-dependent regulation of tachykinin-like immunoreactivity in neurons of monkey visual cortex. J Neurosci 8: 1225–1238

    PubMed  CAS  Google Scholar 

  • Herron CE, Lester RAJ, Coan EJ, Collingridge GL (1986) Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature 322: 265–268

    Article  PubMed  CAS  Google Scholar 

  • Hubel D, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (Lond) 206: 419–436

    CAS  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like-protein in spinal cord neurons following sensory stimulation. Nature 328: 632–634

    Article  PubMed  CAS  Google Scholar 

  • Kauer JA, Malenka RC, Nicoll RA (1988) A persistant postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1: 911–917

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Bear MF, Singer W. Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238: 355–358

    Google Scholar 

  • Lau LF, Nathans D (1985) Identification of a set of genes expressed during the Go/Gi transition of cultured mouse cells. EMBO J 4: 3145–3151

    PubMed  CAS  Google Scholar 

  • Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci USA 84: 1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, Cheney DL, Wood PL (1988) CGS 19755, a selective and competitive N-methyl-Daspartate-type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246: 65–75

    PubMed  CAS  Google Scholar 

  • Lemaire P, Revelant O, Bravo R, Charnay P (1988) Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci USA 85: 4691–4695

    Article  PubMed  CAS  Google Scholar 

  • Linzer DIH, Nathans D (1983) Growth-related changes in specific mRNAs of cultured mouse cells. Proc Natl Acad Sci USA 80: 4271–7275

    Article  PubMed  CAS  Google Scholar 

  • Lodge D, Davies SN, Jones MG, Millar J, Manallack DT, Ornstein PL, Verberne AJM, Young N, Beart PM (1988) A comparison between the in vivo and in vitro activity of five potent and competitive NMDA antagonists. Br J Pharmac 95: 957–965

    CAS  Google Scholar 

  • McDonald JW, Johnston MV, Young AB (1989) Ontogeny of the receptors comprising the NMDA receptor complex. In Society for Neuroscience 19th Annual Meeting, Phoenix Arizona, p 198

    Google Scholar 

  • McNaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157: 277–293

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238: 797–799

    Article  PubMed  CAS  Google Scholar 

  • Miller KD, Chapman B, Stryker MP (1989) Visual responses in adult 76 cat visual cortex depend on N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 86: 5183–5187

    Article  PubMed  CAS  Google Scholar 

  • Montarolo PG et al (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in aplysia. Science 234: 1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192–197

    Article  PubMed  CAS  Google Scholar 

  • Murphy DE, Hutchinson AJ, Hurt SD, Williams M, Sills MA (1988) Br J Pharmac 95: 932–938

    CAS  Google Scholar 

  • Murphy DE, Schneider J, Boehm C, Lehmann J, Williams M (1987) Binding of [3H]-3-(2-carboxypiperazine-4-yul)propyl-l-phosphoric acid to rat brain membranes: A selective high-affinity ligand for N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 240: 778–784

    PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Ryder K, Nathans D (1988) DNA binding activities of three murine jun proteins: stimulation by fos. Cell 55: 907–915

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Kauer JA, Malenka RC (1988) The current excitement in long-term potentiation. Neuron 1: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Rauscher FJ III et al (1988) Fos-associated protein p39 is the product of the jun proto-oncogene. Science 240: 1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Rose SPR, Sinha AK, Jone-Lecointe A (1976) Synthesis of tubulinenriched fraction in rat visual cortex is modulated by dark-rearing and light-exposore. FEBS Lett 65: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Ryder K, Lau LF, Nathans D (1988) A gene activated by growth factors is related to the oncogene v-jun. Proc Natl Acad Sci USA 85: 1487–1491

    Article  PubMed  CAS  Google Scholar 

  • Ryder K, Nathans D (1988) Induction of protooncogene c-jun by serum growth factors. Proc Natl Acad Sci USA 85: 8464–8467

    Article  PubMed  CAS  Google Scholar 

  • Saffen DW, Cole, AJ, Worley, PW, Christy, BA, Ryder, K, Baraban, JM (1988) Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci USA 85: 7795–7799

    Article  PubMed  CAS  Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240: 1328–1331

    Article  PubMed  CAS  Google Scholar 

  • Sukhatme VP et al (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy, Raven Press, New York, p 433–458

    Google Scholar 

  • Tremblay E, Roisin MP, Represa A, Charriaut-Marlangue C, Ben-Ari Y (1988) Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res 461: 393–396

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel D (1963a) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26: 1003–1017

    PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel D (1963b) Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol 26: 978–993

    PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel D (1965) Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28: 1060–1072

    PubMed  CAS  Google Scholar 

  • Wong EHF et al (1986) The anticonvulsant MK-801 is a potent Nmethyl-D-aspartate antagonist. Proc Natl Acad Sci USA 83: 7104–7108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Worley, P.F., Cole, A.J., Saffen, D.W., Baraban, J.M. (1990). Transcription Factor Regulation In Brain: Focus on Activity and NMDA Dependent Regulation. In: Beyreuther, K., Schettler, G. (eds) Molecular Mechanisms of Aging. Veröffentlichungen aus der Geomedizinischen Forschungsstelle der Heidelberger Akademie der Wissenschaften, vol 1990 / 1990/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84224-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84224-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52732-9

  • Online ISBN: 978-3-642-84224-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics