Essential Macromolecular Structures for the Function of the Myelin Membrane of Central Nervous System

  • W. Stoffel
Conference paper
Part of the Veröffentlichungen aus der Geomedizinischen Forschungsstelle der Heidelberger Akademie der Wissenschaften book series (HD AKAD, volume 1990 / 1990/2)


The myelination of axons was a decisive step in evolution which achieved several advantages. The myelin sheath forms an insulator of axons. Several plasma membrane processes of oligodendrocytes target different axons and wrap these spirally at a width of 1–2 µm, leaving the axons naked only at small areas, at the nodes of Ranvier, where the saltatory conductance occurs associated with a depolarization of this very restricted area. This saltatory mode of conductance leads to a 100fold and more increase in the velocity of information transfer between neurons and target cells. Myelination allows a rapid conductance with a reduced diameter of axons. Therefore several times more axons can be accommodated in the same space compared to unmyelinated axons. This explains the importance of myelin for the compaction of the CNS. Repolarization of the axon is limited to the nodes of Ranvier and therefore leads to an enormous saving of energy otherwise required for the repolarization of continuously depolarized naked axons.


Myelin Basic Protein Myelin Protein Proteolipid Protein Myelin Membrane Myelin Proteolipid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arquini M, Roder J, Chia LS, Down J, Wilkinson D, Bayley H, Braun P, Dunn R (1987) Molecular cloning and primary structure of myelin-associated glycoprotein. Proc Natl Acad Sci USA 84: 600–604CrossRefGoogle Scholar
  2. Barbarese E, Braun PE, Carson, FH (1977) Identification of pre-large and pre-small basic proteins in mouse myelin and their structural relationship to large and small basic proteins. Proc Natl Acad Sci USA 74: 3360–3364PubMedCrossRefGoogle Scholar
  3. Billings-Gagliardi S, Adcock LH, Wolf MK (1980) Hypomyelinated mutant mice: description of jp(msd) and comparison with jp and qk on their present genetic backgrounds. Brain Res 194: 325–328PubMedCrossRefGoogle Scholar
  4. Boisson D, Stoffel W (1989) Myelin-deficient rat: a point mutation in exon III (A -3 C, Thr75 — Pro) of the myelin proteolipid protein causes dysmyelination and oligodendrocyte death. EMBO J 8: 3295–3302Google Scholar
  5. Boué J, Oberlé I, Heilig R, Mandel JL, Moser A, Moser H, Larsen W, Dumez Y, Boué A (1985) First trimester prenatal diagnosis of adrenoleukodystrophy by determination of very long chain fatty acid levels and by linkage analysis to a DNA probe. Hum Genet 69: 272–274PubMedCrossRefGoogle Scholar
  6. Braun PE (1984) Molecular organisation of myelin. In: Morell P (ed) Myelin. Plenum Press New York, p 97 Campagnoni CW, Carey GD, Campagnoni AT (1978) Synthesis of myelin basic protein in the developing mouse brain. Arch Biochem Biophys 190: 118–125Google Scholar
  7. Carnegie PR (1971) Amino acid sequence of the encephalitogenic protein of human myelin. Biochem J 123: 57–67PubMedGoogle Scholar
  8. Carson JH, Nielson ML, Barbarese E (1983) Developmental regulation of myelin basic expression in mouse brain. Dev Biol 96: 485–492PubMedCrossRefGoogle Scholar
  9. Chen EJ, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4: 165–170PubMedCrossRefGoogle Scholar
  10. Dautigny A, Alliel PM, d’Auriol L, Pham-Dinh D, Nussbaum JL, Galibert F, Jollès P (1985) Molecular cloning and nucleotide sequence of a cDNA clone coding for rat brain myelin proteolipid. FEBS Letters 188: 33–36PubMedCrossRefGoogle Scholar
  11. Dautigny A, Mattei MG, Morello D, Alliel PM, Pham-Dinh D, Amar L, Arnaud D, Simon D, Mattei JF, Guenet JL, Jollès P, Avner P (1986) The structural gene coding for myelin-associated proteolipid protein is mutated in jimpy mice. Nature 321: 867–869PubMedCrossRefGoogle Scholar
  12. Dautigny A, Mattei MG, Morello D, Alliel PM, Pham-Dinh D, Amar L, Arnaud D, Simon D, Mattei JF, Guenet JL, Jollès P, Avner P (1986) The structural gene coding for myelin-associated proteolipid protein is mutated in jimpy mice. Nature 321: 867–869PubMedCrossRefGoogle Scholar
  13. Dunkley PR, Carnegie PR (1974) Amino acid sequence of the smaller basic protein from rat myelin, Biochem J 141: 243–255PubMedGoogle Scholar
  14. Eylar E, Brostoff SW, Hashim G, Coccam J, Burnett P (1971) Basic Al protein of the myelin membrane. The complete amino acid sequence. J Biol Chem 246: 5770–5784PubMedGoogle Scholar
  15. Folch J, Lees M (1951) A simple method for the isolation and purification of total lipids from animal tissues. JBiol Chem 191: 807–817Google Scholar
  16. Gardiner MV, Macklin WB, Diniak AJ, Deininger PL (1986) Characterisation of myelin proteolipid mRNAs in normal and jimpy mice. Mol Cell Biol 6: 3755–3762Google Scholar
  17. Gartler SM, Riggs AD (1983) Mammalian X chromosome inactivation. Ann Rev Genet 17: 155–190 Gilbert,W (1985) Genes-in-pieces revisited. Science 228: 823–824Google Scholar
  18. Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269PubMedCrossRefGoogle Scholar
  19. Heinrich P (1986) Guidelines for quick and simple plasmid sequencing. Boehringer Mannheim GmbH, MannheimGoogle Scholar
  20. Hogan EL, Greenfield S (1984) Animal models of genetic disorders of myelin. In: Morell P (ed) Myelin. Plenum Press, New York, p 489Google Scholar
  21. Hudson LD, Bendt JA, Puckett C, Kozak CA, Lazzarini RA (1987) Aberrant splicing of proteolipid protein mRNA in the dysmyelinating jimpy mutant mouse. Proc Natl Acad Sci USA 84: 1454–1458PubMedCrossRefGoogle Scholar
  22. Huxley AF, Stämpfli R (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibers. J Physiol 108, 315Google Scholar
  23. Igarashi N, Schaumburg H, Power J, Kishimoto Y, Kolodemy E, Suzuki K (1976) Fatty acid abnormality in adrenoleukodystrophy. J Neurochem 26: 851–860PubMedCrossRefGoogle Scholar
  24. Kamholz J, de Ferra F, Puckett, C, Lazzarini RA (1986) Identification of three forms of human myelin basic protein by cDNA cloning. Proc Natl Acad Sci USA 83: 4962–4966Google Scholar
  25. Kerner AL, Carson JH (1984) Effect of the jimpy mutation on expression of myelin proteins in heterozygous and hemizygous mouse brain. JNeurochem 43: 1706–1715CrossRefGoogle Scholar
  26. Koeppen AH, Ronca NA, Greenfield EA, Hans MB (1987) Defective biosynthesis of proteolipid protein in PelizaeusMerzbacher disease. Ann Neurol 21: 159–170PubMedCrossRefGoogle Scholar
  27. Lyon MF (1961) Gene action in the X chromosome of the mouse (Mus musculus L.). Nature 190: 372–373PubMedCrossRefGoogle Scholar
  28. Mertenson, RE, Deibler GE, Kies MW, McKneally SS, Shapira R, Kibler RF (1972) Differences between the two myelin basic proteins of the rat central nervous system. Biochim Biophys Acta 263: 193–203Google Scholar
  29. Matthieu JM, Roach JM, Omlin FX, Rauboldt I, Almanzan G, Braun PE (1986) Myelin instability and oligodendrocyte metabolism in myelin-deficient mutant mice. J Cell Biol 103: 2673–2682PubMedCrossRefGoogle Scholar
  30. McLauchlan J, Gaffney D, Whitton JL, Clements JB (1985) The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3’-termini. Nucl Acids Res 13: 1347–1368PubMedCrossRefGoogle Scholar
  31. Meier A, MacPike AD (1970) A neurological mutation (msd) of the mouse causing a deficiency of myelin synthesis. Exp Brain Res 10: 512–528PubMedCrossRefGoogle Scholar
  32. Milner RJ, Lai C, Nave KA, Lenoir D, Ogata J, Sutcliffe JG (1985) Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell 42: 931–939PubMedCrossRefGoogle Scholar
  33. Morello D, Dautigny A, Pham-Dinh D, Jollès P (1986) Myelin proteolipid protein (PLP and DM-20) transcripts are deleted in jimpy mutant mice. EMBO J 5: 3489–3493PubMedGoogle Scholar
  34. Nave LA, Kai C, Bloom FE, Milner RJ (1986) Jimpy mutant mouse: a 74 base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci USA 84: 1454–1458Google Scholar
  35. Nave LA, Kai C, Bloom FE, Milner RJ (1986) Jimpy mutant mouse: a 74 base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci USA 84: 1454–1458Google Scholar
  36. Norgard MV, Tocci MJ, Monahan JJ (1980) On the cloning of eukaryotic total poly(A)+ RNA populations in Escherichia soli, J. Biol. Chem. 255, 7665–7672PubMedGoogle Scholar
  37. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain myelination. J Neurochem 21: 759–773PubMedCrossRefGoogle Scholar
  38. Norton WT, Crammer W (1984) Isolation and characterization of myelin. In: Morell P (ed) Myelin. Plenum Press, New York, p 147Google Scholar
  39. Oberlé I, Drayna D, Camerino G, White R, Mandel JL (1985) The telomeric region of the human X chromosome long arm: Presence of a highly polymorphic DNA marker and analyis of recombination frequency. Proc Natl Acad Sci USA 82: 2824–2828PubMedCrossRefGoogle Scholar
  40. Oshiro Y, Eylar EH (1970) Allergic encephalomyelitis: preparation of the encephalitogenic basic protein from bovine brain. Arch Biochem Biophys 138: 392–396PubMedCrossRefGoogle Scholar
  41. Popko B, Puckett C, Lai E, Shine HD, Readhead C, Takahashi N, Hunt SW, Sidman RL, Hood L (1987) Myelin deficient mice: expression of myelin basic protein and generation of mice with varying levels of myelin. Cell 48: 713–721PubMedCrossRefGoogle Scholar
  42. Ranvier ML (1878) Leçons sur l’Histologie du Systeme Nerveux. Librarie F. Savy, ParisGoogle Scholar
  43. Readhead C, Popko B, Takahashi N, Shine HD, Saavedra R, Sidman RL, Hood L (1987) Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48: 703–712PubMedCrossRefGoogle Scholar
  44. Reddy EP, Sandberg-Wollheim M, Mettus RV, Ray PE, De Freitas E, Koprowski H (1989) Amplification and molecular cloning of HTLV-I sequences from DNA of multiple sclerosis patients,.Science 243: 529Google Scholar
  45. Roach A, Takahashi N, Pravtcheva D, Ruddie F, Hood L (1985) Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42: 149–155PubMedCrossRefGoogle Scholar
  46. Ruddle FA (1971) Linkage analysis in man by somatic cell genetics. Nature 242: 165–169CrossRefGoogle Scholar
  47. Saxe DF, Takahashi N, Hood L, Simon MI (1985) Localisation of the human myelin basic protein gene (MBP) to region 18822-qter by in situ hybridisation. Cytogenet Cell Genet 39: 246–249PubMedCrossRefGoogle Scholar
  48. Schaich M, Budzinski RM, Stoffel,W (1986) Cloned proteolipid protein and myelin basic protein cDNA. Biol Chem Hoppe-Seyler 367: 825–834Google Scholar
  49. Seitelberger F (1979) Pelizaeus-Merzbacher disease. In: Vinken Pi, Bryott CW (eds) Handbook of clinical neurology, vol 10. North Holland Publishing Company, Amsterdam, p 150Google Scholar
  50. Sorg BJA, Agrawal D, Agrawal HC, Campagnoni AT (1986) Expression of myelin proteolipid protein and basic protein in normal and dysmyelinating mutant mice. JNeurochem 46: 379–387CrossRefGoogle Scholar
  51. Sparkes PS, Mohandas T, Heiman C, Roth HJ, Klissak I, Campagnoni AT (1987) Assignment of the myelin basic protein to human chromosome 18q22-qter. Human Genet 75: 147–150CrossRefGoogle Scholar
  52. Stoffel W, Hillen H, Giersiefen H (1984) Structure and molecular arrangement of proteolipid protein of central nervous system myelin. Proc Natl Acad Sci USA 81: 5012–5016PubMedCrossRefGoogle Scholar
  53. Stoner GL (1984) Predicted folding of pi-structure in myelin basic protein. JNeurochem 43: 433–447CrossRefGoogle Scholar
  54. Streicher R, Stoffel W (1989) The organisation of the human myelin basic protein. Biol Chem Hoppe-Seyler 370: 503–510PubMedCrossRefGoogle Scholar
  55. Südhof TC, Goldstein JL, Brown ML, Russell DH (1985) The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228: 815–822PubMedCrossRefGoogle Scholar
  56. Takahashi N, Roach A, Taplow DB, Prusiner SB, Hood L (1985) Cloning and characterization of the myelin basic protein gene from mouse: one gene can encode both 14 kd and 18.5 kd MBPs by alternate use of exons. Cell 42: 139–148PubMedCrossRefGoogle Scholar
  57. Virchow, R. (1854) Ueber das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den tierischen Geweben. Virchows Arch Pathol Anat 6: 562–572Google Scholar
  58. Waehneldt TV, Matthieu JM, Jeserich G (1986) Appearance of myelin proteins during vertebrate evolution. Neurochem Int 9: 463–474PubMedCrossRefGoogle Scholar
  59. Willard HF, Riordan JR (1985) Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 230: 940–942PubMedCrossRefGoogle Scholar
  60. Wolfgram F (1966) A new proteolipid fraction of the nervous system. I. Isolation and amino acid analyses. J Neurochem 13: 461–470PubMedCrossRefGoogle Scholar
  61. Yakolev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific Pub., Oxford, p 3Google Scholar
  62. Yanagisawa K, Duncan ID, Hammang, JP, Quarles RH (1986) Myelin-deficient rat: analysis of myelin proteins. J Neurochem 47: 1901–1907PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • W. Stoffel
    • 1
  1. 1.Institut für BiochemieMedizinische Fakultät der Universität zu KölnKöln 41West Germany

Personalised recommendations