Skip to main content

Hierarchical Data Structures for Spatial Reasoning

  • Conference paper
Mapping and Spatial Modelling for Navigation

Part of the book series: NATO ASI Series ((NATO ASI F,volume 65))

Abstract

An overview, with an emphasis on recent results, is presented of the use of hierarchical data structures such as the quadtree for spatial reasoning. They are based on the principle of recursive decomposition. The focus is on the representation of data used in image databases. There is a greater emphasis on region data (i.e., 2-dimensional shapes) and to a lesser extent on point, curvilinear, and 3-dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Abel and J.L. Smith, A data structure and algorithm based on a linear key for a rectangle retrieval problem, Computer Vision, Graphics, and Image Processing 24, 1 (October 1983), 1–13.

    Article  Google Scholar 

  2. D. Ayala, P. Brunet, R. Juan, and I. Navazo, Object representation by means of nonminimal division quadtrees and octrees, ACM Transactions on Graphics 4, 1 (January 1985), 41–59.

    Article  Google Scholar 

  3. I. Carlbom, I. Chakravarty, and D. Vanderschel, A hierarchical data structure for representing the spatial decomposition of 3-D objects, IEEE Computer Graphics and Applications 5, 4 (April 1985), 24–31.

    Article  Google Scholar 

  4. D. Corner, The Ubiquitous B-tree, ACM Computing Surveys 11, 2 (June 1979), 121–137.

    Article  Google Scholar 

  5. R.A. Finkel and J.L. Bentley, Quad trees: a data structure for retrieval on composite keys, Acta Informatica 4, 1 (1974), 1–9.

    Article  MATH  Google Scholar 

  6. K. Fujimura and T.L. Kunii, A hierarchical space indexing method, Proceedings of Computer Graphics’85, Tokyo, 1985, T1–4, 1–14.

    Google Scholar 

  7. I. Gargantini, An effective way to represent quadtrees, Communications of the ACM 25, 12 (December 1982), 905–910.

    Article  MATH  Google Scholar 

  8. S.L. Horowitz and T. Pavlidis, Picture segmentation by a tree traversal algorithm, Journal of the ACM 25, 2 (April 1976), 368–388.

    Article  Google Scholar 

  9. G.M. Hunter, Efficient computation and data structures for graphics, Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Princeton University, Princeton, NJ, 1978.

    Google Scholar 

  10. G.M. Hunter, Geometrees for interactive visualization of geology: an evaluation, System Science Department, Schlumberger-Doll Research, Ridgefield, CT, 1981.

    Google Scholar 

  11. G.M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 2(April 1979), 145–153.

    Article  Google Scholar 

  12. C.L. Jackins and S.L. Tanimoto, Oct-trees and their use in representing three-dimensional objects, Computer Graphics and Image Processing 14, 3 (November 1980), 249–270.

    Article  Google Scholar 

  13. E. Kawaguchi and T. Endo, On a method of binary picture representation and its application to data compression, IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 1 (January 1980), 27–35.

    Article  MATH  Google Scholar 

  14. A. Klinger, Patterns and Search Statistics, in Optimizing Methods in Statistics, J.S. Rustagi, Ed., Academic Press, New York, 1971, 303–337.

    Google Scholar 

  15. A. Klinger and C.R. Dyer, Experiments in picture representation using regular decomposition, Computer Graphics and Image Processing 5, 1 (March 1976), 68–105.

    Article  Google Scholar 

  16. A. Klinger and M.L. Rhodes, Organization and access of image data by areas, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 1 (January 1979), 50–60.

    Article  Google Scholar 

  17. M. Li, W.I. Grosky, and R. Jain, Normalized quadtrees with respect to translations, Computer Graphics and Image Processing 20, 1 (September 1982), 72–81.

    Article  MATH  Google Scholar 

  18. D. Meagher, Octree encoding: a new technique for the representation, The manipulation, and display of arbitrary 3-d objects by computer, Technical Report IPL-TR-80–111, Image Processing Laboratory, Rensselaer Polytechnic Institute, Troy, New York, October 1980.

    Google Scholar 

  19. D. Meagher, Geometric modeling using octree encoding, Computer Graphics and Image Processing 19, 2 (June 1982), 129–147.

    Article  Google Scholar 

  20. G.M. Morton, A computer oriented geodetic data base and a new technique in file sequencing, IBM Ltd., Ottawa, Canada, 1966.

    Google Scholar 

  21. I. Navazo, Contribució a les fecniques de modelat geometric d’objectes poli’edrics usant la codificació amb arbres octals, Ph.D. dissertation, Escola Tecnica Superior d’Enginyers Industrials, Department de Metodes Informatics, Universitat Politechnica de Barcelona, Barcelona, Spain, January 1986.

    Google Scholar 

  22. R.C. Nelson and H. Samet, A consistent hierarchical representation for vector data, Computer Graphics 20, 4(August 1986 ), pp. 197–206 (also Proceedings of the SIGGRAPH’86 Conference, Dallas, August 1986 ).

    Google Scholar 

  23. J.A. Orenstein, Multidimensional tries used for associative searching, Information Processing Letters 1.4, 4(June 1982 ), 150–157.

    Google Scholar 

  24. K.M. Quinlan and J.R. Woodwark, A spatially-segmented solids database–justification and design, Proceedings of CAD 82 Conference, Butterworth, Guildford, United Kingdom, 1982, 126–132.

    Google Scholar 

  25. D.R. Reddy and S. Rubin, Representation of three-dimensional objects, CMU-CS-78–113, Computer Science Department, Carnegie-Mellon University, Pittsburgh, April 1978.

    Google Scholar 

  26. H. Samet, An algorithm for converting rasters to quadtrees, IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 1 (January 1981), 93–95.

    Article  MathSciNet  Google Scholar 

  27. H. Samet, Neighbor finding techniques for images represented by quadtrees, Computer Graphics and Image Processing 18, 1 (January 1982), 37–57.

    Article  MATH  Google Scholar 

  28. H. Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys 16, 2 (June 1984), 187–260.

    Article  MathSciNet  Google Scholar 

  29. H. Samet, Hierarchical representations of collections of small rectangles, to appear in ACM Computing Surveys (also University of Maryland Computer Science TR-1967).

    Google Scholar 

  30. H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  31. H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  32. H. Samet, Neighbor finding in images represented by octrees, Computer Vision, Graphics, and Image Processing 46, 3 (June 1989), 367–386.

    Article  MathSciNet  Google Scholar 

  33. H. Samet, A. Rosenfeld, C.A. Shaffer, R.C. Nelson, Y-G. Huang, and K. Fujimura, Application of hierarchical data structures to geographic information systems: phase IV, Computer Science TR-1578, University of Maryland, College Park, MD, December 1985.

    Google Scholar 

  34. H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, A geographic information system using quadtrees, Pattern Recognition 17, 6 (November/December 1984 ), 647–656.

    Article  Google Scholar 

  35. H. Samet, C.A. Shaffer, and R.E. Webber, Digitizing the plane with cells of non-uniform size, Information Processing Letters 24, 6 (April 1987), 369–375.

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Samet and R.E. Webber, Storing a collection of polygons using quadtrees, ACM Transactions on Graphics 4, 3(July 1985), 182–222 (also Proceedings of Computer Vision and Pattern Recognition 88, Washington, DC, June 1983, 127–132; and University of Maryland Computer Science TR-1372).

    Google Scholar 

  37. H. Samet and R.E. Webber, A comparison of the space requirements of multi-dimensional quadtree-based file structures, to appear in The Visual Computer (also University of Maryland Computer Science TR-1711).

    Google Scholar 

  38. H. Samet and R.E. Webber, Hierarchical data structures and algorithms for computer graphics. Part I. Fundamentals, IEEE Computer Graphics and Applications 8, 3 (May 1988), 48–68.

    Article  Google Scholar 

  39. H. Samet and R.E. Webber, Hierarchical data structures and algorithms for computer graphics. Part II. Applications, IEEE Computer Graphics and Applications 8, 4 (July 1988), 59–75.

    Article  Google Scholar 

  40. C.A. Shaffer and H. Samet, Optimal quadtree construction algorithms, Computer Vision, Graphics, and Image Processing 87, 3 (March 1987), 402–419.

    Article  Google Scholar 

  41. M. Shneier, Calculations of geometric properties using quadtrees, Computer Graphics and Image Processing 16, 3 (July 1981), 296–302.

    Article  Google Scholar 

  42. M. Tamminen, The EXCELL method for efficient geometric access to data, Acta Polytechnica Scandinavica, Mathematics and Computer Science Series No. 34, Helsinki, 1981.

    Google Scholar 

  43. S. Tanimoto and T. Pavlidis, A hierarchical data structure for picture processing, Computer Graphics and Image Processing 4, 2 (June 1975), 104–119.

    Article  Google Scholar 

  44. D.J. Vanderschel, Divided leaf octal trees, Research Note, SchlumbergerDoll Research, Ridgefield, CT, March 1984.

    Google Scholar 

  45. J.L. Warnock, A hidden surface algorithm for computer generated half tone pictures, Computer Science Department TR 4–15, University of Utah, Salt Lake City, June 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samet, H. (1990). Hierarchical Data Structures for Spatial Reasoning. In: Pau, L.F. (eds) Mapping and Spatial Modelling for Navigation. NATO ASI Series, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84215-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84215-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84217-7

  • Online ISBN: 978-3-642-84215-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics