Advertisement

3D Morphometric and Morphologic Information Derived From Clinical Brain MR Images

  • Ron Kikinis
  • Ferenc A. Jolesz
  • Guido Gerig
  • Tamas Sandor
  • Harvey E. Cline
  • William E. Lorensen
  • Michael Halle
  • Stephen A. Benton
Part of the NATO ASI Series book series (volume 60)

Abstract

Data from conventional clinical MR brain images were processed using multi-step computerized segmentation as well as 3D analysis and rendering techniques. The usefulness of so obtained morphometric information and morphologic display for the development of new concepts for diagnosis and follow up of diseases was demonstrated with data sets from patients with Alzheimer’s disease, normal pressure hydrocephalus, multiple sclerosis and brain tumors.

Keywords

Multiple Sclerosis White Matter Lesion Normal Pressure Hydrocephalus Intracranial Cavity Normal Pressure Hydrocephalus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benton, S.A.: Display Holography: A SPIE Critical Review of Technology. SPIE. 532, 8–13 (1985)Google Scholar
  2. Feinberg, D.A., Hale, J.D., Watts, J.C., et al.: Halving MR Imaging Time by Conjugation: Demonstration at 3.5 kG. Radiology. 161, 527–531 (1986)Google Scholar
  3. Filipek, P.A., Kennedy, D.N., Caviness, V.S., et al.: Magnetic Resonance Imaging-based Brain Morphometry: Development and Application to Normal Subjects. Ann Neurol. 25, 61–67 (1989)CrossRefGoogle Scholar
  4. Gerig, G., Kuoni, W., Kikinis, R., et al.: Medical Imaging and Computer Vision: An Integrated Approach for Diagnosis and Planning. 11th DAGM Symposium Mustererkennung 1989, Hamburg, FRG, Oct 2–4, 1989. Fachberichte IFB 219, Springer Berlin:425–443Google Scholar
  5. Jack, C.R,, Gehring, D.G., Sharbrough, F.W., et al.: Temporal Lobe Volume Measurement from MR Images: Accuracy and Left-Right Asymmetry in Normal Persons. J Comput Assist Tomogr. 12, 21–29 (1988)CrossRefGoogle Scholar
  6. Jolesz, F.A., Schwartz, R.B., LeClerq, G.T., et al.: Half Fourier Spin Echo Imaging in Routing Clinical Brain and Cervical Spine Protocols. Presented at the Society of Magnetic Resonance Imaging in Washington D.C. Feb. 24–28, 1990Google Scholar
  7. Kikinis, R., Jolesz, F.A., Halle, M.W., et al.: Computer-assisted Analysis of Fluid Spaces from Routine MR Imaging Data. Radiology. 173(P), 367 (abstract) (1989)Google Scholar
  8. LeMay, M., and New, P.J.: Radiological Diagnosis of Occult Normal-Pressure Hydrocephalus. Radiology. 96, 347–358 (1970)Google Scholar
  9. Levin, D.N., Pelizzari, C.A., Chen, G.T.Y., et al: Retrospective Geometric Correlation of MR, CT, and PET Images. Radiology 169, 817–823 (1988)Google Scholar
  10. Lorensen, W.E., and Cline, H.E.: Marching cubes: a high resolution 3D surface reconstruction algorithm. ACM Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  11. Mitchell, M.D., Kundel, H.L., Axel, L., et al.: Agarose as a tissue equivalent phantom material for NMR imaging. Magn Reson Imag. 4, 263–266 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Ron Kikinis
    • 1
  • Ferenc A. Jolesz
    • 2
  • Guido Gerig
    • 1
  • Tamas Sandor
    • 3
  • Harvey E. Cline
    • 3
  • William E. Lorensen
    • 3
  • Michael Halle
    • 4
  • Stephen A. Benton
    • 4
  1. 1.Department of RadiologyHarvard Medical School and Brigham and Women’s HospitalBostonUSA
  2. 2.Image Science DivisionInstitute for Communication Technology, ETH-ZürichZürichSwitzerland
  3. 3.General Electric CorporationSchenectadyUSA
  4. 4.Spatial Imaging GroupMedia Laboratory, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations