Skip to main content

Assessment of the Breathing Workload During Mechanical Ventilation

  • Chapter
Pulmonary Function in Mechanically Ventilated Patients

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 13))

Abstract

Although “work of breathing (WB) ” is generally understood to relate to patient effort during breathing activity, the term must be carefully defined. An ideal measure of breathing workload would serve as an index of the energy expended by the specific respiratory muscles of interest. Often, however, the clinician or investigator is selectively interested in the inspiratory musculature: diaphragm, external intercostals and the accessory muscles of ventilation. At other times, there is interest in knowing how the stress of breathing adds to total body oxygen consumption (the “oxygen cost of breathing”), regardless of the muscle groups involved. In comparisons of respiratory equipment and in many clinical situations it is not the total energy expenditure of the respiratory system of an individual patient that is in question, but the work done across an external device or a subcomponent of the total breathing impedance (airway, lung or chest wall) under specified airflow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett RG Jr, Brubach HF, Specht H (1958) Oxygen cost of breathing. J Appl Physiol 12: 413–424

    PubMed  Google Scholar 

  2. Cherniack RM (1959) The oxygen consumption and efficiency of respiratory muscles in health and emphysema. J Clin Invest 38: 494–499

    Article  PubMed  CAS  Google Scholar 

  3. Bartlett RH, Dechert RE, Mault JR, et al (1982) Measurement of metabolism in multiple organ failure. Surgery 92: 771–779

    PubMed  CAS  Google Scholar 

  4. Bigland B, Lippold OCJ (1954) The relationship between force, velocity, and integrated electrical activity in human muscles. J Physiol (London) 123: 214–224

    CAS  Google Scholar 

  5. Gross D, Grassino A, Roos WRD, et al (1979) Electromyogram pattern of diaphragmatic fatigue. J Appl Physiol 46: 1–7

    PubMed  CAS  Google Scholar 

  6. Wilson SH, Looke NT, Maxham J, Spiro SJ (1984) Sternomastoid muscle function and fatigue in normal subjects and in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 129: 460–464

    PubMed  CAS  Google Scholar 

  7. Loring SH, Bruce EN (1986) Methods for study of the chest wall. In: Fishman AP, Macklem PT, Mead J (eds) Handbook of physiology. American Physiological Society, Bethesda, pp 415–428

    Google Scholar 

  8. Otis AB (1954) The work of breathing. Physiol Rev 34: 449–458

    PubMed  CAS  Google Scholar 

  9. Roussos C (1985) Energetics. In: Roussos C, Macklem PT (eds) The thorax. Dekker, New York, pp 437–492

    Google Scholar 

  10. Gillespie DJ (1982) Comparison of intraesophageal balloon pressure with a nasogastric-esophageal balloon system in volunteers. Am Rev Respir Dis 126: 583–585

    PubMed  CAS  Google Scholar 

  11. Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19: 207–211

    PubMed  CAS  Google Scholar 

  12. Baydur A, Behrakis K, Zin A, et al (1982) A simple method for assessing the validity of esophageal balloon technique. Am Rev Respir Dis 126: 788–791

    PubMed  CAS  Google Scholar 

  13. Baydur A, Cha E, Sassoon CSH (1987) Validation of esophageal balloon technique at different lung volumes and postures. J Appl Physiol 62: 315–321

    Article  PubMed  CAS  Google Scholar 

  14. Peters RM (1969) The energy cost (work) of breathing. Ann Thorac Surg 7: 51–67

    Article  PubMed  CAS  Google Scholar 

  15. Marini JJ, Rodriguez RM, Lamb V (1986) Bedside estimation of the inspiratory work of breathing during mechanical ventilation. Chest 89: 56–63

    Article  PubMed  CAS  Google Scholar 

  16. Truwit JD, Marini JJ, Lamb VJ (1988) The work of spontaneous breathing can be predicted noninvasively during mechanical ventilation. Am Rev Respir Dis 137 (4, Pt. 2): 64

    Google Scholar 

  17. Milic-Emili J (1986) Is weaning an art or a science? Am Rev Respir Dis 134: 1107–1108

    PubMed  CAS  Google Scholar 

  18. Otis AM, Fenn WO, Rahn H (1950) Mechanics of breathing in man. J Appl Physiol 2: 592–607

    PubMed  CAS  Google Scholar 

  19. Otis AB (1964) The work of breathing. In: Fenn WO, Rahn H (eds) Handbook of physiology, sect. 3, vol 1. American Physiological Society, Washington, DC pp 463–476

    Google Scholar 

  20. Marini JJ (1988) Monitoring during mechanical ventilation. Clinics in Chest Medicine 9: 73–100

    PubMed  CAS  Google Scholar 

  21. Marini JJ, Capps JS, Culver BH (1985) The inspiratory work of breathing during assisted mechanical ventilation. Chest 87: 612–618

    Article  PubMed  CAS  Google Scholar 

  22. Marini JJ, Rodríguez RM, Lamb V (1986) The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis 134: 902–906

    PubMed  CAS  Google Scholar 

  23. Fernández R, Benito S, Sanchis J, Milic-Emili J, Net A (1988) Inspiratory effort and occlusion pressure in triggered mechanical ventilation. Intensive Care Med 14: 650–653

    PubMed  Google Scholar 

  24. Taylor RF, Marini JJ, Smith TC, et al (1987) Bedside estimation of respiratory drive during machine-assisted ventilation. Am Rev Respir Dis 135: A51

    Google Scholar 

  25. Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 65: 1488–1499

    PubMed  CAS  Google Scholar 

  26. Bellemare F, Grassino A (1982) Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol 53: 1190–1195

    Article  PubMed  CAS  Google Scholar 

  27. Rochester DF, Arora NS (1983) Respiratory muscle failure. Med Clin North Am 67: 573–597

    PubMed  CAS  Google Scholar 

  28. Field S, Kelly SM, Macklem PT (1982) The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis 126: 9–13

    PubMed  CAS  Google Scholar 

  29. Marini JJ, Smith TC, Lamb VJ (1988) External work output and force generation during synchronized intermittent mechanical ventilation. Am Rev Respir Dis 138: 1169–1179

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marini, J.J. (1991). Assessment of the Breathing Workload During Mechanical Ventilation. In: Benito, S., Net, A. (eds) Pulmonary Function in Mechanically Ventilated Patients. Update in Intensive Care and Emergency Medicine, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84209-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84209-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52650-6

  • Online ISBN: 978-3-642-84209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics