Interactions Between Convective and Diffusive Components of O2 Transport to the Tissues

  • J. Roca
  • M. Hogan
  • P. D. Wagner
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 13)


The metabolism of the human beings is essentially aerobic. This means that the energy necessary to support the different biological functions of the organism depends ultimately on the adequate utilization of atmospheric O2 in the mitochondrial respiration.


Oxygen Delivery Maximum Exercise Adult Respiratory Distress Syndrome Diffusive Component American Physiological Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weibel ER (1984) The pathway for oxygen. Structure and function in the mammalian respiratory system. Harvard University Press, LondonGoogle Scholar
  2. 2.
    Wagner PD (1988) An integrated view of the determinants of maximum oxygen uptake. In: Gonzalez NC, Fedde MR (eds) Oxygen transfer from atmosphere to tissues (Advances in experimental medicine and biology, vol 227) Plenum Press, New York, pp 245–256Google Scholar
  3. 3.
    Hogan MC, Roca J, West JB, Wagner PD (1989) Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius “in situ”. J Appl Physiol 66 (3): 1919–1226Google Scholar
  4. 4.
    Hogan MC, Roca J, Wagner PD, West JB (1988) Limitation of maximal O2 uptake and performance by acute hypoxia in “in situ” dog muscle. J Appl Physiol 65 (2): 815–821PubMedGoogle Scholar
  5. 5.
    Roca J, Hogan MC, Story D, et al. (1989) Evidence of tissue diffusion limitation of VO2max in normal man. J Appl Physiol 67 (1): 291–299PubMedGoogle Scholar
  6. 6.
    Kaijser L (1970) Limiting factors for aerobic muscle performance. The influence of varying oxygen pressure and temperature. Acta Physiol Scand (Suppl) 3246: 1–96Google Scholar
  7. 7.
    Jobsis FF, Stainsby WN (1986) Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 45: 2937–2941Google Scholar
  8. 8.
    Rowell LB, Saltin B, Kiens B, Christensen NJ (1986) Is peak quadriceps flow in humans even higher during exercise with hypoxemia? Am J Physiol (Heart Circ Physiol) 256 (20): H1038–H1044Google Scholar
  9. 9.
    Gledhill N (1982) Blood doping and related issues: a brief review. Med Sei Sports Exercise 14(3): 183–189Google Scholar
  10. 10.
    Welch HG (1982) Hyperoxia and human performance: a brief review. Med Sci Sports Exercise 14 (4): 253–262CrossRefGoogle Scholar
  11. 11.
    Pirnay F, Lamy M, Dujardin J, Deroanne R, Petit JM (1972) Analysis of femoral venous blood during maximum exercise. J Appl Physiol 33 (3): 289–292PubMedGoogle Scholar
  12. 12.
    Horstman DH, Gleser M, Delehunt J (1976) Effects of altering O2 delivery on VO2 of isolated, in situ working muscle. Am J Physiol 230: 327–334PubMedGoogle Scholar
  13. 13.
    Saltin B (1985) Hemodynamic adaptations to exercise. Am J Cardiol 55: 42D–47DPubMedCrossRefGoogle Scholar
  14. 14.
    Piiper J, Scheid P (1975) Gas transport efficacy of gills, lungs and skin: theory and experimental data. Resp Physiol 23: 209–221CrossRefGoogle Scholar
  15. 15.
    Wagner PD (1987) Peripheral inert-gas exchange. In: Fishman AP (ed) Handbook of physiology. The respiratory system, vol. IV. American Physiological Society, Bethesda, MDGoogle Scholar
  16. 16.
    Bohr C (1909) Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Scand Arch Physiol 22: 221–280Google Scholar
  17. 17.
    Wagner PD (1977) Diffusion and chemical reaction in pulmonary gas exchange. Physiol Rev 57 (2): 257–312PubMedGoogle Scholar
  18. 18.
    Honig CR, Gayeski TEJ, Federspiel W, Clark A Jr, Clark P (1984) Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Adv Exp Med Biol 169: 23–38PubMedGoogle Scholar
  19. 19.
    Gayeski TEJ, Honig CR (1988) Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. Am J Physiol (Heart Circ Physiol) 254: H1179–H1186Google Scholar
  20. 20.
    Krogh A (1919). The number and distribution of capillaries in muscle with calculations of the pressure head necessary for supplying the tissue. J Physiol (London) 52: 409–415Google Scholar
  21. 21.
    Danek SJ, Lynch JP, Weg JG, Danztker DR (1980) The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis 122: 387–395PubMedGoogle Scholar
  22. 22.
    Mohsenifar Z, Jasper AC, Mickle E, Koerner SK (1988) Relationship between oxygen uptake and oxygen delivery in pulmonary hypertension. Am Rev Respir Dis 138: 69–73PubMedCrossRefGoogle Scholar
  23. 23.
    Kawakami Y, Kishi F, Yamamoto H, Miyamoto K (1983) Relationships of oxygenation and pulmonary hemodynamics to prognosis in chronic obstructive pulmonary disease. N Engl J Med 134: 1135–1139Google Scholar
  24. 24.
    Gutierrez G, Pohil RJ, Strong R (1988) Effect of flow on O2 consumption during progressive hypoxemia. J Appl Physiol 65: 601–607PubMedGoogle Scholar
  25. 25.
    Grisham MB, McCord JM (1986) Chemistry and cytotoxicity of reactive oxygen metabolites. In: Taylor A, Matalon S, Ward P (eds) Physiology of oxygen radicals. Clinical physiology series. American Physiological Society, Bethesda, MD, pp 1–18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. Roca
  • M. Hogan
  • P. D. Wagner

There are no affiliations available

Personalised recommendations