Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 13))

Abstract

Capnography is a technique for analyzing and visualizing CO2 concentration in the gas used in breathing. The measurement systems used give the digital value of CO2 concentration, expressed as a percentage or in mmHg, and a graphic representation in real time on an oscilloscope or monitor screen. CO2 concentration is usually plotted on the ordinate axis and time on the abscissa axis. This simple system is a sensitive indicator of metabolic changes and disturbances in tissue perfusion, and also reflect variations in pulmonary ventilation/perfusion relationship, as well as changes in lung mechanics in artificially ventilated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tobin MJ (1988) Respiratory monitoring in the intensive care unit. Am Rev Respir Dis 138: 1625–1642

    PubMed  CAS  Google Scholar 

  2. Snyder JV, Elliot JL, Grenvik A (1982) Capnography. In: Spence AA (ed) Respiratory monitoring in intensive care. Churchill Livingstone, Edinburgh, pp 100–121

    Google Scholar 

  3. Blanch Ll, Fernandez R, Benito S, Mancebo J, Net A (1987) Effect of PEEP on the arterial minus end-tidal carbon dioxide gradient. Chest 92: 451–454

    Article  PubMed  CAS  Google Scholar 

  4. Burton GW (1969) Measurement of inspired and expired oxygen and carbon dioxide. Br J Anaesth 41: 723–730

    Article  PubMed  CAS  Google Scholar 

  5. Stock MC (1988) Noninvasive carbon dioxide monitoring. Crit Care Clin 4: 511–526

    PubMed  CAS  Google Scholar 

  6. Kinsella SM (1985) Assessment of the Hewlett-Packard HP47210A capnometer. Br J Anaesth 57: 919–923

    Article  PubMed  CAS  Google Scholar 

  7. Fletcher R, Werner O, Nordström L, Jonson B (1983) Sources of error and their correction in the measurement of carbon dioxide elimination using the Siemens-Elema CO2 analyser. Br J Anaesth 55: 177–185

    Article  PubMed  CAS  Google Scholar 

  8. Davies NJH, Denison DM (1982) Respiratory mass spectrometry. In: Spence AA (ed) Respiratory monitoring in intensive care. Churchill Livingstone, Edinburgh, pp 123–144

    Google Scholar 

  9. Riker JB, Haberman B (1976) Expired gas monitoring by mass spectrometry in a respiratory intensive care unit. Crit Care Med 4: 223–229

    Article  PubMed  CAS  Google Scholar 

  10. Ozanne GM, Young WG, Mazzei WJ, Severinghaus JW (1981) Multipatient anesthetic mass spectrometry: rapid analysis of data stored in long catheters. Anesthesiology 55: 62–70

    Article  PubMed  CAS  Google Scholar 

  11. Meny RC, Bhat AM, Aranas E (1985) Mass spectrometer monitoring of expired carbon dioxide in critically ill neonates. Crit Care Med 13: 1064–1066

    Article  PubMed  CAS  Google Scholar 

  12. Boysen PG, Broome JA (1988) Noninvasive monitoring of lung function during mechanical ventilation. Crit Care Clin 4: 527–541

    PubMed  CAS  Google Scholar 

  13. Gothard JWW, Busst CM, Branthwaite MA, Davies NJH, Denison DM (1980) Applications of respiratory mass spectrometry to intensive care. Anaesthesia 35: 890–895

    Article  PubMed  CAS  Google Scholar 

  14. Davies NJH, Denison DM (1979) The uses of long sampling probes in respiratory mass spectrometry. Respir Physiol 37: 335–346

    Article  PubMed  CAS  Google Scholar 

  15. Burki NK, Albert RK (1983) Noninvasive monitoring of arterial blood gases. Chest 83: 666–670

    Article  PubMed  CAS  Google Scholar 

  16. Carlon GC, Ray C, Miodownik S, Kopec I, Groeger JS (1988) Capnography in mechanically ventilated patients. Crit Care Med 16: 550–556

    Article  PubMed  CAS  Google Scholar 

  17. Smalhout B, Kalenda Z (1981) An atlas of capnography. Kerckebosch -Zeist -The Netherlands

    Google Scholar 

  18. Pyles ST, Berman LS, Modell JH (1984) Expiratory valve dysfunction in a semiclosed circle anesthesia circuit -verification by analysis of carbon dioxide waveform. Anesth Analg 63: 536–537

    Article  PubMed  CAS  Google Scholar 

  19. Trevino RP, Bisera J, Weil MH, Rackow EC, Grundler WG (1985) End-tidal CO2 as a guide to successful cardiopulmonary resuscitation: a preliminary report. Crit Care Med 13: 910–911

    Article  PubMed  CAS  Google Scholar 

  20. Lepilin MG, Vasilyev AV, Bildinov OA, Rostovtseva NA (1987) End-tidal carbon dioxide as a noninvasive monitor of circulatory status during cardiopulmonary resuscitation: a preliminary clinical study. Crit Care Med 15: 958–959

    Article  PubMed  CAS  Google Scholar 

  21. Garnett AR, Ornato JP, Gonzalez ER, Johnson EB (1987) End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. JAMA 257: 512–515

    Article  PubMed  CAS  Google Scholar 

  22. Dohi S, Takeshima R, Matsumiya N (1987) Carbon dioxide elimination during circulatory arrest. Crit Care Med 15: 944–946

    Article  PubMed  CAS  Google Scholar 

  23. Gudipati CV, Weil MH, Bisera J, Deshmukh HG, Rackow EC (1988) Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation 77: 234–239

    Article  PubMed  CAS  Google Scholar 

  24. Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 318: 607–611

    Article  PubMed  CAS  Google Scholar 

  25. Jones NL, Campbell EJM, Edwards RHT, Robertson DG (1975) Clinical exercise testing. Saunders, Philadelphia, pp 57–62

    Google Scholar 

  26. Jones NL, Campbell EJM (1982) Clinical exercise testing. Saunders, Philadelphia, pp 130–151

    Google Scholar 

  27. Franciosa JA, Ragan DO, Rubenstone SJ (1976) Validation of the CO2 rebreathing method for measuring cardiac output in patients with hypertension or heart failure. J Lab Clin Med 88: 672–682

    PubMed  CAS  Google Scholar 

  28. Franciosa JA (1977) Evaluation of the CO2 rebreathing cardiac output method in seriously ill patients. Circulation 55: 449–455

    PubMed  CAS  Google Scholar 

  29. Davis CC, Jones NL, Sealey BJ (1978) Measurements of cardiac output in seriously ill patients using a CO2 rebreathing method. Chest 73: 167–172

    Article  PubMed  CAS  Google Scholar 

  30. Blanch Ll, Benito S, Mancebo J, Calaf N, Caviedes I, Net A (1986) Determinación del gasto cardiaco por reinhalación de CO2. Med Intensiva 10: 61–65

    Google Scholar 

  31. Blanch Ll, Fernandez R, Benito S, Solé J, Net A (1987) Medida del gasto cardiaco con el monitor CPU. Med Intensiva 11: 313–316

    Google Scholar 

  32. Blanch Ll, Fernandez R, Benito S, Mancebo J, Calaf N, Net A (1988) Accuracy of an indirect carbon dioxide Fick method in determination of the cardiac output in critically ill mechanically ventilated patients. Intensive Care Med 14: 131–135

    Article  PubMed  CAS  Google Scholar 

  33. Mahler DA, Matthay RA, Snyder PA, Neff RK, Loke J (1985) Determination of cardiac output at rest and during exercise by carbon dioxide rebreathing method in obstructive airway disease. Am Rev Respir Dis 131: 73–78

    PubMed  CAS  Google Scholar 

  34. Hatle L, Rokseth R (1974) The arterial to end-expiratory carbon dioxide tension gradient in acute pulmonary embolism and other cardiopulmonary diseases. Chest 66: 352–357

    Article  PubMed  CAS  Google Scholar 

  35. Collier CR (1956) Determination of mixed venous CO2 tension by rebreathing. J Appl Physiol 9: 25–29

    PubMed  CAS  Google Scholar 

  36. Campbell EJM, Howell JBL (1960) Simple rapid methods of estimation arterial and mixed venous PCO2. Br Med J 1: 458–462

    Article  PubMed  CAS  Google Scholar 

  37. Campbell EJM, Howell JBL (1962) Rebreathing method for measurement of mixed venous PCO2. Br Med J 2: 630–633

    Article  PubMed  CAS  Google Scholar 

  38. McEvoy JDS, Jones NL, Campbell EJM (1973) Alveolar-arterial PCO2 difference during rebreathing in patients with chronic hypercapnia. J Appl Physiol 35: 542–545

    PubMed  CAS  Google Scholar 

  39. McEvoy JDS, Jones NL, Campbell EJM (1974) Mixed venous and arterial CO2. Br Med J 4: 687–690

    Article  PubMed  CAS  Google Scholar 

  40. Fletcher R (1985) Dead space, invasive and non-invasive. Br J Anaesth 57: 245–249

    Article  PubMed  CAS  Google Scholar 

  41. Burki NK (1986) The dead space to tidal volume ratio in the diagnosis of pulmonary embolism. Am Rev Respir Dis 133: 679–685

    PubMed  CAS  Google Scholar 

  42. Truwit JD, Marini JJ (1988) Evaluation of thoracic mechanics in the ventilated patient. Part 1: Primary measurements. J Crit Care 3: 133–150

    Article  Google Scholar 

  43. Marini JJ (1988) Monitoring during mechanical ventilation. Clin Chest Med 9: 73–100

    PubMed  CAS  Google Scholar 

  44. Baker RW, Burki NK (1987) Alterations in ventilatory pattern and ratio of dead-space to tidal volume. Chest 92: 1013–1017

    Article  PubMed  CAS  Google Scholar 

  45. Nunn JF, Hill DW (1960) Respiratory dead space and arterial to end-tidal CO2 tension difference in anesthetized man. J Appl Physiol 15: 383–389

    PubMed  CAS  Google Scholar 

  46. Nutter DO, Massumi RA (1966) The arterial-alveolar carbon dioxide tension gradient in diagnosis of pulmonary embolus. Chest 50: 380–387

    Article  CAS  Google Scholar 

  47. Poppius H, Korhonen O, Viljanen AA, Kreus KE (1975) Arterial to end-tidal CO2 difference in respiratory disease. Scand J Resp Dis 56: 254–262

    CAS  Google Scholar 

  48. Yamanaka MK, Sue DY (1987) Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest 92: 832–835

    Article  PubMed  CAS  Google Scholar 

  49. Murray IP, Modell JH, Gallagher TJ, Banner MJ (1984) Titration of PEEP by the arterial minus end-tidal carbon dioxide gradient. Chest 85: 100–104

    Article  PubMed  CAS  Google Scholar 

  50. Suter P (1984) Appropriate lung distension for gas exchange in ARDS. Chest 85: 4–5

    Article  PubMed  CAS  Google Scholar 

  51. Jardin F, Genevray B, Pazin M, Margairaz A (1985) Inability to titrate PEEP in patients with acute respiratory failure using end-tidal carbon dioxide measurements. Anesthesiology 62: 530–533

    Article  PubMed  CAS  Google Scholar 

  52. Matamis D, Lemaire F, Harf A, Brun-Bruisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86: 58–66

    Article  PubMed  CAS  Google Scholar 

  53. Mancebo J, Benito S, Calaf N, Caviedes I, Blanch Ll (1986) Presión positiva espiratoria y presión de apertura en la insuficiencia respiratoria aguda. Med Intensiva 10: 24–27

    Google Scholar 

  54. Pesenti A, Marcolin R, Prato P, Borelli M, Riboni A, Gattinoni L (1985) Mean airway pressure vs positive end-expiratory pressure during mechanical ventilation. Crit Care Med 13: 34–37

    Article  PubMed  CAS  Google Scholar 

  55. Coney RL, Albert RK, Robertson HT (1983) Mechanisms of physiological dead space response to PEEP after acute oleic acid lung injury. J Appl Physiol 55: 1550–1557

    Google Scholar 

  56. Dueck R, Wagner PD, West JB (1977) Effects of positive end-expiratory pressure on gas exchange in dogs with normal and edematous lungs. Anesthesiology 47: 359–366

    Article  PubMed  CAS  Google Scholar 

  57. Hlastala MP, Robertson HT (1978) Inert gas elimination characteristics of the normal and abnormal lung. J Appl Physiol 44: 258–266

    PubMed  CAS  Google Scholar 

  58. West JB (1979) Ventilación/perfusión alveolar e intercambio gaseoso, 3rd edn. Editorial Medica Panamericana, Buenos Aires, pp 36–51

    Google Scholar 

  59. Banner MJ, Boysen PG, Lampotang S, Jaeger MJ (1986) End-tidal CO2 affected by inspiratory time and flow waveform-time for a change. Crit Care Med 14: 374

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanch, L. (1991). Capnography. In: Benito, S., Net, A. (eds) Pulmonary Function in Mechanically Ventilated Patients. Update in Intensive Care and Emergency Medicine, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84209-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84209-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52650-6

  • Online ISBN: 978-3-642-84209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics