Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 13))

Abstract

Until recently there have been relatively few measurements of respiratory mechanics in mechanically ventilated patients, probably reflecting the notion that in the intensive care setting respiratory mechanics data are difficult to obtain [1]. In reality, however, in mechanically ventilated patients a detailed analysis of respiratory mechanics can be readily made. In this article, I will focus on the technique of rapid airway occlusion during constant-flow inflation because it can easily be used with commercial ventilators (e.g., Siemens Servo 900C). Such ventilators are versatile and have built-in devices for measuring flow and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suter PM (1985) Assessment of respiratory mechanics in ARDS. In: Zapol WM, Falke KJ (eds) Acute respiratory failure, vol 24. Dekker, New York, pp 507–519

    Google Scholar 

  2. Neergaard K von, Wirz K (1927) Die Messung der Strömungswiderstände in den Atemwegen des Menschen, insbesondere beim Asthma und Emphysema. Z Klin Med 105: 21–27

    Google Scholar 

  3. Neergaard K von, Wirz K (1927) Über eine Methode zur Messung der Lungenelastizität am lebenden Menschen, insbesondere bei Emphysem. Z Klin Med 105: 35–50

    Google Scholar 

  4. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Flow and volume dependence of pulmonary mechanics in anesthetized cats. J Appl Physiol 64: 441–450

    PubMed  CAS  Google Scholar 

  5. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Chest wall and respiratory system mechanics in cats: effects of flow and volume. J Appl Physiol 64: 2636–2646

    PubMed  CAS  Google Scholar 

  6. Sly PD, Brown KA, Bates JHT, Macklem PT, Milic-Emili J (1988) Effect of lung volume on interrupter resistance in cats challenged with methacholine. J Appl Physiol 64: 360–366

    PubMed  CAS  Google Scholar 

  7. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behaviour of the respiratory system with constant inspiratory flow. J Appl Physiol 58: 1840–1848

    PubMed  CAS  Google Scholar 

  8. Behrakis PK, Higgs BC, Baydur A, Zin WA, Milic-Emili J (1983) Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J Appl Physiol 1085–1092

    Google Scholar 

  9. Don HF, Robson JG (1965) The mechanics of the respiratory system during anesthesia. The effect of atropine and carbon dioxide. Anesthesiology 26: 168–178

    Article  PubMed  CAS  Google Scholar 

  10. Bates JHT, Ludwing MS, Sly PD, Brown KA, Martin JG, Fredberg JJ (1988) Interrupter resistance elucidated by alveolar pressure measurement in openchest normal dogs. J Appl Physiol 64: 408–414

    Google Scholar 

  11. Fredberg JJ, Ingram RH, Castille RG, Glass GM, Drazen JM (1985) Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules. J Appl Physiol 58: 1914–1922

    PubMed  CAS  Google Scholar 

  12. Martins MA, Saldiva PHN, Caldeira MPR, Vieira JE, Zin WA (1988) Respiratory system, lung, and chest wall mechanics in guinea pigs. Brazilian J Med Biol Res 21: 353–363

    CAS  Google Scholar 

  13. Otis AB, McKerrow CB, Bartlett RA, Mead J, Mcllroy MB, Selverstone NJ, Radford EP (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8: 427–443

    PubMed  CAS  Google Scholar 

  14. Barnas GM, Yoshino K, Loring SH, Mead J (1987) Impedance and relative displacements of the relaxed chest wall up to 4 Hz. J Appl Physiol 62: 71–81

    PubMed  CAS  Google Scholar 

  15. Barnas GM, Yoshino K, Stamenovic D, Kikuchi Y, Loring SH, Mead J (1989) Chest wall impedance partitioned into rib cage and diaphragm-abdominal pathways. J Appl Physiol 66: 350–359

    Article  PubMed  CAS  Google Scholar 

  16. Rossi A, Gottfried SB, Higgs BD, Zocchi L, Grassino A, Milic-Emili J (1985) Respiratory mechanics in mechanically ventilated patients. J Appl Physiol 58: 1849–1858

    PubMed  CAS  Google Scholar 

  17. Broseghini C, Brandolese R, Poggi R, Polese G, Manzin E, Milic-Emili J, Rossi A (1988) Respiratory mechanics during the first day of mechanical ventilation in patients with pulmonary edema and chronic airway obstruction. Am Rev Respir Dis 138: 355–361

    PubMed  CAS  Google Scholar 

  18. Rossi A, Gottfried SB, Zocchi L, et al (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. Am Rev Respir Dis 131: 672–677

    PubMed  CAS  Google Scholar 

  19. Jonson B, Nordstrom L, Olsson SG, Akerback D (1975) Monitoring of ventilation and lung mechanics during automatic ventilation. A new device. Bull Eur Physiopathol Respir 11: 729–743

    CAS  Google Scholar 

  20. Pepe PE, Marini JJ (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis 126: 166–170

    PubMed  CAS  Google Scholar 

  21. Mead J, Agostoni E. Dynamics of breathing. In: Fenn WO, Rahn H (eds) Handbook of physiology. Respiration, sect 3, vol I, chapt 14. Am Physiol Soc, Washington, DC, pp 411–427

    Google Scholar 

  22. Hilderbrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic linear viscoelastic model. J Appl Physiol 28: 365–372

    Google Scholar 

  23. Bates JHT, Baconnier P, Milic-Emili J (1988) A theoretical analysis of the interrupter technique for measuring respiratory mechanics. J Appl Physiol 64: 2204–2214

    PubMed  CAS  Google Scholar 

  24. Briscoe WA, Dubois AB (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37: 1279–1285

    Article  PubMed  CAS  Google Scholar 

  25. Bates JHT, Hunter I, Sly PD, Okubo S, Filiatrault S, Milic-Emili J (1987) The effect of closure time on the determination of respiratory resistance by flow interruption. Med Biol Eng Comput 25: 136–140

    Article  PubMed  CAS  Google Scholar 

  26. Sly PD, Bates JHT, Milic-Emili J (1987) Measurement of respiratory mechanics using the Siemens Servo Ventilator 900C. Ped Pulm 3: 400–405

    Article  CAS  Google Scholar 

  27. Levy P, Similowski T, Corbeil C, Albala M, Pariente R, Milic-Emili J (1990) A method for measuring static pressure volume curves of the respiratory system during mechanical ventilation. J Crit Care (in press)

    Google Scholar 

  28. Bates JHT, Decramer M, Chartrand D, Zin WA, Boddener A, Milic-Emili J (1985) Volume-time profile during relaxed expiration in the normal dog. J Appl Physiol 59: 732–737

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milic-Emili, J. (1991). Elastance and Resistance of Respiratory System. In: Benito, S., Net, A. (eds) Pulmonary Function in Mechanically Ventilated Patients. Update in Intensive Care and Emergency Medicine, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84209-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84209-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52650-6

  • Online ISBN: 978-3-642-84209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics