Physical Picture of Parametric Phenomena and Ponderomotive Effects in Solids

  • P. Mulser
Conference paper
Part of the Springer Series on Wave Phenomena book series (SSWAV, volume 9)


In this paper a physical picture is given of the important class of three wave parametric decay processes occurring in nonlinear optics of solids. Starting from the radiation pressure on a single particle a general expression for the ponderomotive force in dense matter at rest and in motion is derived. In a second step the formulae are applied to parametric processes of nonlinear optics and it is shown that in terms of wave pressure the quantitative analysis is much more concise, systematic and intuitive.


Plasma Wave Radiation Pressure Stimulate Raman Scattering Stimulate Brillouin Scattering Ponderomotive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.P. Godwin, Phys. Rev. Letters 28, 85 (1972).ADSCrossRefGoogle Scholar
  2. [2]
    J.P. Freidberg, R.W. Mitchell, R.L. Morse, and L.I. Rudsinski, Phys. Rev. Letters 28, 795 (1972).ADSCrossRefGoogle Scholar
  3. [3]
    P. Mulser, J. Opt. Soc. Am. B 2, 1814 (1985).ADSCrossRefGoogle Scholar
  4. [4]
    P.N. Lebedev, Ann. Phys. 6, 433 (1901).CrossRefGoogle Scholar
  5. [5]
    E. Nichols and G.F. Hull, Ann. Phys. 12, 225 (1903).CrossRefMATHGoogle Scholar
  6. [6]
    W. Gerlach and A. Golsen, Z. Phys. 15, 1 (1923).ADSCrossRefGoogle Scholar
  7. [7]
    H.A.H. Boot, S.A. Self, and R.B.R. Shersby-Harvie, J. Electron. Control 4, 434 (1958).CrossRefGoogle Scholar
  8. [8]
    A.V. Gapunov and M.A. Miller, Soy. Phys. JETP 7, 168 (1958).Google Scholar
  9. [9]
    T.W.B. Kibble, Phys. Review 150, 1060 (1966).ADSCrossRefGoogle Scholar
  10. H. Hora, D. Pfirsch, and A. Schlüter, Z. Naturforsch. 22a, 278 (1967).ADSGoogle Scholar
  11. [10]
    F.A. Hopf, P. Meystre, M.O. Scully, and W.H. Louisell, Opt. Comm. 18, 413 (1976);ADSCrossRefGoogle Scholar
  12. F.A. Hopf, P. Meystre, M.O. Scully, and W.H. Louisell, Phys. Rev. Letters 37, 1342 (1976).ADSCrossRefGoogle Scholar
  13. R.W. Müller, Averaged Effect of Strong-Focusing Fields, in Annual Report GSI-88–17 (ISSN 0171–4546), Darmstadt, 1988, p. 26.Google Scholar
  14. [11]
    L.D. Landau and E.M. Lifshitz, Mechanics, Pergamon, Oxford, 1976; p. 93.Google Scholar
  15. [12]
    J. Kupersztych, Phys. Rev. Letters 54, 1385 (1985).ADSCrossRefGoogle Scholar
  16. R.D. Brooks and Z.A. Pietrzyk, Phys. Fluids 30, 3600 (1987).ADSCrossRefGoogle Scholar
  17. [13]
    D.A. D’Ippolito and J.R. Myra, Phys. Fluids 28, 1895 (1985).ADSCrossRefMATHGoogle Scholar
  18. B.I. Cohen and Th.D. Rognlien, Phys. Fluids 28., 2793 (1985).Google Scholar
  19. Ph.L. Similon, A.N. Kaufman, and D.D. Holm, Phys. Fluids 29, 1900 (1986).ADSCrossRefGoogle Scholar
  20. [14]
    See: The Mechanical Effects of Light, in J. Opt. Soc. Am. B2, Nr. 11 (1985), p. 1751, 1776.Google Scholar
  21. [15]
    E.L. Raab, M. Prentiss, A. Cable, S. Chu, and D.E. Pritchard, Phys. Rev. Letters 5. 9, 2631 (1977).Google Scholar
  22. F. Diedrich, E.Peik, J.M. Chen, W. Quint, and H. Walther, Phys. Rev. Letters 59, 2931 (1987).ADSCrossRefGoogle Scholar
  23. [16]
    J. Dalibard and C. Cohen-Tanoudji, J. Opt. Soc. Am. B2, 1707 (1985).ADSCrossRefGoogle Scholar
  24. [17]
    B.W. Boreham and B. Luther-Davies, J. Appl. Phys. 50, 2533 (1979).ADSCrossRefGoogle Scholar
  25. W. Becker, R.R. Schlicher, M.O. Scully, and K. Wodkiewicz, J. Opt. Soc. Am. B4, 743 (1987).ADSCrossRefGoogle Scholar
  26. [18]
    K. Lee, D.W. Forslund, J.M. Kindel, and E.L. Lindmann Phys. Fluids 20, 51 (1977).ADSCrossRefGoogle Scholar
  27. C. Max and C. McKee, Phys. Rev. Letters 32, 1336 (1977).ADSCrossRefGoogle Scholar
  28. P. Mulser and C. van Kessel, Phys. Rev. Letters 38, 902 (1977).ADSCrossRefGoogle Scholar
  29. O. Willi and P.T. Rumsby, Opt. Comm. 31, 45 (1981).ADSCrossRefGoogle Scholar
  30. W.B. Mori, C. Joshi, J.M. Forslund, and J.M. Kindel, Phys. Rev. Letters 60, 1298 (1988).ADSCrossRefGoogle Scholar
  31. [19]
    Such a decomposition is not unique in rigorous mathematical terms, however, the arbitrariness is small as long as the amplitude E(x) changes slowly over one wavelength and v o is much less than the phase velocity of the wave. In the opposite case the concept of ponderomotive force becomes meaningless.Google Scholar
  32. [20]
    L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Pergamon, Oxford, 1980, p. 118.Google Scholar
  33. [21]
    M.L. Sawley, J. Plasma Phys. 32, 487 (1984).ADSCrossRefGoogle Scholar
  34. [22]
    M. Kruskal, J. Math. Phys. 3, 806 (1962).MathSciNetADSCrossRefMATHGoogle Scholar
  35. [23]
    W. Schneider, Elektronenbeschleunigung durch inhomogene Langmuirwellen hoher Amplitude, Thesis, Tech. Hochschule Darmstadt, 1984 (unpublished). Part of it is published in P. Mulser and W. Schneider, Excitation of Nonlinear Electron Plasma Waves and Particle Acceleration by Laser, in Twenty Years of Plasma Physics, B. McNamara ed., World Scientific, Philadelphia, 1985, p. 280.Google Scholar
  36. [24]
    W.K.H. Panowsky and Melba Phillips, Classical Electricity and Magnetism,Addison-Wesley, Reading Mass., 1962 Sec.6–6.Google Scholar
  37. [25]
    L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Oxford 1981, Secs. 15, 16.Google Scholar
  38. [26]
    R. Becker and F. Sauter, Electromagnetic Fields and Interactions,Dover, New York, 1982, Vol.I, Sec.35.Google Scholar
  39. [27]
    J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, Sec. 2. 22.Google Scholar
  40. [28]
    P. Penfield and H.A. Haus, Electrodynamics of Moving Media,M.I.T. Press, Cambridge, Mass., 1967, chaps. 7 and 8.Google Scholar
  41. [29]
    V.P. Silin, Sov. Phys. JETP 21, 1127 (1965).ADSGoogle Scholar
  42. [30]
    F.F. Chen, Introduction to Plasma Physics, Plenum Press, New York, 1976, p. 264.Google Scholar
  43. [31]
    There exists another qualitative explanation in the literature which at first glance works in the OTSI case; however, it is inconsistent and when applied to the PDI it fails. Therefore we do not follow this attempt further.Google Scholar
  44. [32]
    K. Nishikawa, J. Phys. Soc. Japan 24, 916 and 1152 (1968).Google Scholar
  45. [33]
    P. Mulser, A. Giulietti, and M. Vaselli, Phys. Fluids 27, 2035 (1984).ADSCrossRefMATHGoogle Scholar
  46. [34]
    P. Mulser, Ponderomotive Force Effects in Laser-Plasma Interaction, in Inertial Confinement Fusion, EUR 11930 EN, eds. A. Caruso and E. Sindoni, Bologna, 1989, p. 54.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • P. Mulser
    • 1
  1. 1.Theoretische Quantenelektronik, Institut für Angewandte PhysikTH DarmstadtDarmstadtFed. Rep. of Germany

Personalised recommendations