Skip to main content

Cellular Metabolic Consequences of Altered Perfusion

  • Chapter
Tissue Oxygen Utilization

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 12))

Abstract

The cellular metabolic and functional consequences of reduced oxygen availability have been extensively studied since the turn of the century. The knowledge of the response of the whole body or of individual organs to hypoxia was initially mainly based on analyses of substrate and intermediary metabolite levels in arterial and/or venous blood. With time analytic techniques were improved allowing detailed biochemical characterization of the metabolic situation in microsamples of tissues, isolated cells and subcellular fractions. Thereby the bulk of information on the cellular effects of shock, anoxia and ischemia grew rapidly in the 1950s and 1960s [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowley RA, Trump BE (eds) (1982) Pathophysiology of shock, anoxia, and ischemia. Williams & Wilkins, Baltimore

    Google Scholar 

  2. Bergentz S-E, Carlsten A, Gelin L-E, Kreps J (1969) “Hidden acidosis” in experimental shock. Ann Surg 169:227–232

    Article  PubMed  CAS  Google Scholar 

  3. Haljamäe H (1970) “Hidden” cellular electrolyte responses to hemorrhagic shock and their significance. Rev Surg 27:315–324

    PubMed  Google Scholar 

  4. Couch NP, Dmochowski JR, Van de Water JM, Harken DE, Moore FD (1971) Muscle surface pH as an index of peripheral perfusion in man. Ann Surg 173: 173–183

    Article  PubMed  CAS  Google Scholar 

  5. Filler RM, Das JB, Espinosa HM (1972) Clinical experience with continuous muscle pH monitoring as an index of tissue perfusion and oxygenation and acid-base status. Surgery 72: 23–33

    PubMed  CAS  Google Scholar 

  6. Campion DS, Lynch U, Rector FC Jr, Carter N, Shires GT (1969) Effect of hemorrhagic shock on transmembrane potential. Surgery 66: 1051–1059

    PubMed  CAS  Google Scholar 

  7. Haljamäe H (1970) Effects of hemorrhagic shock and treatment with hypothermia on the potassium content and transport of single mammalian skeletal muscle cells. Acta Physiol Scand 78: 189–200

    Article  PubMed  Google Scholar 

  8. Cunningham JN Jr, Shires GT, Wagner Y (1971) Cellular transport defects in hemorrhagic shock. Surgery 70: 212–222

    Google Scholar 

  9. Trunkey DD, Illner H, Wagner IY, Shires GT (1973) The effect of hemorrhagic shock on intracellular muscle action potentials in the primate. Surgery 74: 241–250

    PubMed  CAS  Google Scholar 

  10. Baue AE, Wurth MA, Chaudry IH, Sayeed MM (1973) Impairment of cell membrane transport during shock and after treatment. Ann Surg 178: 412–422

    Article  PubMed  CAS  Google Scholar 

  11. Sayeed MM, Adler RJ, Chaudry IH, Baue AE (1981) Effect of hemorrhagic shock on hepatic transmembrane potentials and intracellular electrolytes in vivo. Am J Physiol 240: R211 - R219

    PubMed  CAS  Google Scholar 

  12. Jennische E, Enger E, Medegärd A, Appelgren L, Haljamäe H (1978) Correlation between tissue pH, cellular transmembrane potentials, and cellular energy metabolism during shock and during ischemia. Circ Shock 5: 251–260

    PubMed  CAS  Google Scholar 

  13. Jennische EC, Medegärd KAI, Haljamäe H (1978) Transmembrane potential changes as an indicator of cellular metabolic deterioration in skeletal muscle during shock. Eur Surg Res 10: 125–133

    Article  PubMed  CAS  Google Scholar 

  14. Cunningham JN Jr, Carter NW, Rector FC Jr, Seldin DW (1971) Resting trans-membrane potential difference of skeletal muscle in normal subjects and severely ill patients. J Clin Invest 50: 49–59

    Article  PubMed  CAS  Google Scholar 

  15. Jennische E, Hagberg H, Haljamäe H (1982) Extracellular potassium concentration and membrane potential in rabbit gastrocnemius muscle during tourniquet ischemia. Pflügers Arch 392: 335–339

    Article  PubMed  CAS  Google Scholar 

  16. Hagberg H, Haljamäe H, Johansson B, Petterson B, Wennberg E (1983) Liver and skeletal muscle metabolism, extracellular K + concentrations, and survival in spontaneously hypertensive rats following acute blood loss. Circ Shock 10: 61–70

    PubMed  CAS  Google Scholar 

  17. Hagberg H (1985) Intracellular pH during ischemia in skeletal muscle: relationship to membrane potential, extracellular pH, tissue lactic acid and ATP. Pflügers Arch 404: 342–347

    Article  PubMed  CAS  Google Scholar 

  18. Gutierrez G, Andry JM (1989) Nuclear magnetic resonance measurements — Clinical applications. Crit Care Med 17: 73–82

    Article  PubMed  CAS  Google Scholar 

  19. Blum H, Schall MD, Renshaw PF, Buzby GP (1988) Metabolic and ionic changes in skeletal muscle during hemorrhagic shock. Circ Shock 26: 341–351

    PubMed  CAS  Google Scholar 

  20. Black PR, Brooks DC, Bessey PQ, Wolfe RR, Wilmore DW (1982) Mechanism of insulin resistance following injury. Ann Surg 196: 420–433

    Article  PubMed  CAS  Google Scholar 

  21. Cohen RD, Woods HF (1983) Lactic acidosis revisited. Diabetes 82: 181–191

    Google Scholar 

  22. Frommer JP (1983) Lactic acidosis. Med Clin N Am 67: 815–829

    PubMed  CAS  Google Scholar 

  23. Park R, Arieff AI (1983) Lactic acidosis: Current concepts. Clin Endocrin Metab 12: 339–358

    Article  CAS  Google Scholar 

  24. Kreisberg RA (1984) Pathogenesis and management of lactic acidosis. Ann Rev Med 35: 181–193

    Article  PubMed  CAS  Google Scholar 

  25. Haljamäe H (1987) Lactate metabolism. Intensive Care World 4: 118–121

    Google Scholar 

  26. Haljamäe H, Enger E (1975) Human skeletal muscle energy metabolism during and after complete tourniquet ischemia. Ann Surg 182: 9–14

    Article  PubMed  Google Scholar 

  27. Enger EA, Jennische E, Medegärd A, Haljamäe H (1978) Cellular restitution after 3 h of complete tourniquet ischemia. Eur Surg Res 10: 230–239

    Article  PubMed  CAS  Google Scholar 

  28. Jennische E (1983) Effects of ischemia on the hepatic cell membrane potential in the rat. Differences between fed and fasted animals. Acta Physiol Scand 118: 69–73

    Article  PubMed  CAS  Google Scholar 

  29. Hagberg H, Jennische E, Haljamäe H (1985) Influence of tissue lactic acid and ATP levels on postischemic recovery in rabbit skeletal muscle. Circ Shock 16: 363–374

    PubMed  CAS  Google Scholar 

  30. Wennberg E, Hagberg H, Haljamäe H (1986) Liver susceptibility to ischemia in spontaneously hypertensive rats. Acta Anaesthesiol Scand 30: 361–365

    Article  PubMed  CAS  Google Scholar 

  31. Dawkins MJR, Judah JD, Rees KR (1959) Factors influencing the survival of liver cells during autolysis. J Path Bact 17: 257–275

    Article  Google Scholar 

  32. Bassi M, Bernelli-Zazzere A (1964) Ultrastructural cytoplasmatic changes of liver cells after reversible and irreversible ischemia. Exp Mol Pathol 3: 332–350

    Article  Google Scholar 

  33. Brosnan JT, Krebs HA, Williamson DH (1970) Effects of ischemia on metabolic concentrations in rat liver. Biochem J 117: 91–96

    PubMed  CAS  Google Scholar 

  34. Hems DA, Brosnan JT (1970) Effects of ischemia on content of metabolites in rat liver and kidney in vivo. Biochem J 120: 105–111

    PubMed  CAS  Google Scholar 

  35. Lambotte L (1977) Effects of anoxia and ATP depletion on the membrane potential and permeability of dog liver. J Physiol (London) 269: 53–76

    CAS  Google Scholar 

  36. Jennische E (1983) Aspects on ischemic cell injury. Doctoral thesis. University of Gothenburg, Gothenburg, Sweden

    Google Scholar 

  37. Jennische E (1982) Relation between membrane potential and lactate in gastrocnemius and soleus muscle of the cat during tourniquet ischemia and postischemic reflow. Pflügers Arch 394: 329–332

    Article  PubMed  CAS  Google Scholar 

  38. Sahlin K, Harris RC, Hultman E (1975) Creatine kinase equilibrium and lactate content compared with muscle pH in tissue samples obtained after isometric exercise. Biochem J 152: 173–180

    PubMed  CAS  Google Scholar 

  39. Swartz WM, Cha CJM, Clowes GHA, Randall HT (1978) The effect of prolonged ischemia on high-energy phosphate metabolism in skeletal muscle. Surg Gynecol Obstet 147: 872–876

    PubMed  CAS  Google Scholar 

  40. Jennische E, Amundson B, Haljamäe H (1979) Metabolic responses in feline “red” and “white” skeletal muscle to shock and ischemia. Acta Physiol Scand 106: 39–45

    Article  PubMed  CAS  Google Scholar 

  41. Jennische E (1985) Ischemia-induced injury in glycogen-depleted skeletal muscle. Selective vulnerability of FG-fibres. Acta Physiol Scand 125: 727–734

    Article  PubMed  CAS  Google Scholar 

  42. Chaudry IH (1983) Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 245: R117 - R134

    PubMed  CAS  Google Scholar 

  43. Haljamäe H (1988) The cell in shock. In: Peter K, Lawin P, Jensen U, Martin E (eds) Schock: Strombahn, Mediatoren, Zelle. Thieme Stuttgart, New York, pp 9–21

    Google Scholar 

  44. Hoffman EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69: 315–382

    Google Scholar 

  45. Baue AE, Chaudry IH, Wurth MA, Sayeed MM (1974) Cellular alterations with shock and ischemia. Angiology 25: 31–41

    Article  PubMed  CAS  Google Scholar 

  46. Wurth MA, Sayeed MM, Baue AE (1972) Sodium-potassium ATPase activity in the liver with hemorrhagic shock. Proc Soc Exp Biol Med 139: 1238–1241

    PubMed  CAS  Google Scholar 

  47. Williams JA (1970) Origin of transmembrane potentials in non-excitable cells. J Theor Biol 28: 287–296

    Article  PubMed  CAS  Google Scholar 

  48. Sayeed MM, Adler J, Chaudry IH, Baue AE (1981) Effects of hemorrhagic shock on hepatic transmembrane potentials and intracellular electrolytes, in vivo. Am J Physiol 240: R211 - R219

    PubMed  CAS  Google Scholar 

  49. Shiba Y, Muneoka Y, Kanno Y (1977) Energy requirement for the maintenance of the membrane potential in rat liver cells in situ. Jap J Physiol 27: 185–193

    Article  CAS  Google Scholar 

  50. Hagberg H (1985) Electrolyte, pH and metabolic changes in skeletal muscle during ischemia. An experimental study including construction and application of ion-sensitive microelectrodes. Doctoral thesis, University of Gothenburg, Gothenburg, Sweden

    Google Scholar 

  51. Chiu D, Wang HH, Blumenthal MR (1976) Creatine phosphokinase release as a measure of tourniquet effect on skeletal muscle. Arch Surg 111: 71–74

    Article  PubMed  CAS  Google Scholar 

  52. Wolf MB, DeLand EC (1978) The association between K+ and H+ distribution in skeletal muscle: Implication to linked transport. J Theor Biol 72: 729–741

    Article  PubMed  CAS  Google Scholar 

  53. Aickin CC (1986) Intracellular pH regulation by vertebrate muscle. Ann Rev Physiol 48: 349–361

    Article  CAS  Google Scholar 

  54. Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250: 1–8

    PubMed  CAS  Google Scholar 

  55. Rasmussen H, Barrett PQ (1984) Calcium messenger system: an integrated view. Physiol Rev 64: 938–984

    PubMed  CAS  Google Scholar 

  56. Hayashi H, Chaudry IH, Clemens MG, Hull MJ, Baue AE (1986) Reoxygenation injury in isolated hepatocytes: effects of extracellular ATP on cation homeostasis. Am J Physiol 250: R573 - R579

    PubMed  CAS  Google Scholar 

  57. Kessler M, Höper J (1988) Mechanisms of cell injury in low-flow, normal-flow and no-flow anoxia. Progr Clin Biol Res 264: 7–16

    CAS  Google Scholar 

  58. Perry MO, Shires III GT, Albert SA (1984) Cellular changes with graded limb ischemia and reperfusion. J Vasc Surg 1: 536–540

    PubMed  CAS  Google Scholar 

  59. Roberts JP, Perry MO, Hariri RJ, Shires GT (1985) Incomplete recovery of muscle cell function following partial but not complete ischemia. Circ Shock 17: 253–258

    PubMed  CAS  Google Scholar 

  60. Siesjö BK, Rehncrona S (1980) Cellular metabolic changes in complete and severe incomplete ischemia. In: Lewis DH (ed) Induced skeletal muscle ischemia in man. Karger, Basel, pp 3–24

    Google Scholar 

  61. Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255: H1269 - H1275

    PubMed  CAS  Google Scholar 

  62. Nayler WG, Elz JS (1986) Reperfusion injury: laboratory artifact or clinical dilemma? Circulation 74: 215–221

    Article  PubMed  CAS  Google Scholar 

  63. Puntis MCA, Persson B, Jeppson B, Bengmark S, Jonsson GG, Pero RN (1987) Free radical production in the ischemic rat liver. Surg Res Comm 1: 17–20

    Google Scholar 

  64. Bulkley GB (1987) Pathophysiology of free radical-mediated reperfusion injury. J Vasc Surg 5: 512–517

    PubMed  CAS  Google Scholar 

  65. Neglén P, Jabs CM, Eklöf B (1989) Plasma metabolic disturbances and reperfusion injury following partial limb ischemia in man. Eur J Vasc Surg 3: 165–172

    Article  PubMed  Google Scholar 

  66. Korthuis RJ, Granger DN, Townsley MI, Taylor AE (1985) The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57: 599–609

    PubMed  CAS  Google Scholar 

  67. Belkin M, LaMorte WL, Wright JG, Hobson II RW (1989) The role of leukocytes in the pathophysiology of skeletal muscle ischemic injury. J Vasc Surg 10: 14–19

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haljamäe, H. (1991). Cellular Metabolic Consequences of Altered Perfusion. In: Gutierrez, G., Vincent, J.L. (eds) Tissue Oxygen Utilization. Update in Intensive Care and Emergency Medicine, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84169-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84169-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52472-4

  • Online ISBN: 978-3-642-84169-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics