Conditions Associated with Impaired Oxygen Extraction

  • J. Goris
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 12)


One aim of the cardiovascular system, and especially of the peripheral circulation, is to deliver an adequate volume of oxygen at an adequate partial pressure to replace the oxygen used at the terminal oxidase of the respiratory chain in the mitochondria. This oxygen supply is vital, as 95% of the energy generated by the body normally originates from aerobic pathways, and as the entire aerobic energy store of the body supports resting needs for maximally 5 min [1].


Lactate Production Adult Respiratory Distress Syndrome Oxygen Extraction Reactive Hyperemia Reflex Sympathetic Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kreuzer F, Cain SM (1985) Regulation of the peripheral vasculature and tissue oxygenation in health and disease. Crit Care Clin 1: 453–470PubMedGoogle Scholar
  2. 2.
    Border JR, Gallo E, Schenk WG (1966) Systemic arteriovenous shunting in patients under severe stress: a common cause of high output cardiac failure? Surgery 60: 225–231Google Scholar
  3. 3.
    Huckabee WE (1958) Relationship of pyruvate and lactate during anaerobic metabolism. III. Effect of breathing low oxygen gases. J Clin Invest 37: 264–271PubMedPubMedCentralGoogle Scholar
  4. 4.
    Powers SR, Mannal R, Neclerio M, et al (1973) Physiologic consequences of positive end-expiratory pressure ( PEEP) ventilation. Ann Surg 178: 265–272Google Scholar
  5. 5.
    Danek SJ, Lynch JP, Weg JG, Dantzker DR (1980) The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis 122: 387–395PubMedGoogle Scholar
  6. 6.
    Seyfer AE, Zajtchuk R, Hazlett DR, Mologne LA (1977) Systemic vascular performance in endotoxic shock. Surg Gynec Obstet 145: 401–407PubMedGoogle Scholar
  7. 7.
    Gutierrez G, Pohil RJ (1986) Oxygen consumption is linearly related to 02 supply in critically ill patients. J Crit Care 1: 45–53Google Scholar
  8. 8.
    Beerthuizen GIJM, Goris RJA, Kreuzer FJA (1989) Early detection of shock in critically ill patients by skeletal muscle P02 assessment. Arch Surg 124: 853–855PubMedGoogle Scholar
  9. 9.
    Wilmore DW (1986) The wound as an organ. In: Little RA, Frayn KN (eds) The scientific basis for the care of the critically ill. Manchester Univ Press, pp 45–59Google Scholar
  10. 10.
    Silver IA (1977) Tissue PO, changes in acute inflammation. Adv Exp Med Biol 94: 769–774PubMedGoogle Scholar
  11. 11.
    Jonsson K, Hunt TK, Mathes SJ (1988) Oxygen as an isolated variable influences resistance to infection. Ann Surg 208: 783–787PubMedGoogle Scholar
  12. 12.
    Cain SM (1990) Physiological and pathological oxygen supply dependency. In: Gutierrez G, Vincent JL (eds) Update in intensive care and emergency medicine, vol 12. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  13. 13.
    Houtchens BA, Westenskow DR (1984) Oxygen consumption in septic shock: collective review. Circ Shock 13: 361–384PubMedGoogle Scholar
  14. 14.
    Shepherd AP, Granger HG, Smith EE, Guyton AC (1973) Local control of tissue oxygen delivery and its contribution to the regulation of cardiac output. Am J Physiol 225: 747–755PubMedGoogle Scholar
  15. 15.
    Cain SM (1977) Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physiol 42: 228–234PubMedGoogle Scholar
  16. 16.
    Cain SM (1965) Appearance of excess lactate in anesthetized dogs during anemia and hypoxic hypoxia. Am J Physiol 209: 604–609PubMedGoogle Scholar
  17. 17.
    Shibutani K, Komatsu T, Kubal K, Sanchala V, Kumar V, Bizarri DV (1983) Critical levels of oxygen delivery in anesthetized man. Crit Care Med 11: 640–643PubMedGoogle Scholar
  18. 18.
    Weber KT, Janicki JS (1985) Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol 55: 22A - 31APubMedGoogle Scholar
  19. 19.
    Kasnitz P, Druger GL, Yorra F, Simmons DH (1976) Mixed venous oxygen tension and hyperlactatemia. Survival in severe cardiopulmonary disease. JAMA 236: 570–574Google Scholar
  20. 20.
    Gutierrez G, Pohil RJ, Andry JM, Strong R, Narayama P (1988) Bioenergetics of rabbit skeletal muscle during hypoxemia and ischemia. J Appl Physiol 65: 601–607PubMedGoogle Scholar
  21. 21.
    Ito K, Nioka S, Chance B (1989) Oxygen dependency of high energy phosphate and heart function on the rat myocardium. ISOTT Goettingen (abstract)Google Scholar
  22. 22.
    Nelson DP, King CE, Dodd SL, Shumacker PT, Cain SM (1987) Systemic and intestinal limits of 02 extraction in the dog. J Appl Physiol 63: 387–394PubMedGoogle Scholar
  23. 23.
    Habazettl H, Conzen P, Christ M, et al (1989) Myocardial oxygen balance and tissue PO, during arterial hypoxemia and hyperoxemia in pigs. ISOTT Goettingen (abstract)Google Scholar
  24. 24.
    Chapler CK, Cain SM (1977) Blood flow and oxygen uptake in the isolated canine hindlimb during acute anemia. Physiologist 20: 15Google Scholar
  25. 25.
    Raynaud J, Vargas H, Sant MC, et al (1989) Muscular metabolism during rhytmic exercise of the forearm working at VO2max, in normoxia and hypo-and hypercapnic hypoxia. ISOTT Gottingen (abstract)Google Scholar
  26. 26.
    Simmons DH, Alpas AP, Tashkin DP, Coulson A (1978) Hyperlactatemia due to arterial hypoxemia or reduced cardiac output, or both. J Appl Physiol 45: 195–202PubMedGoogle Scholar
  27. 27.
    Stainsby WN, Otis AB (1964) Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle. Am J Physiol 206: 858–866PubMedGoogle Scholar
  28. 28.
    Falchuk KH, Goetzl EJ, Kulka JP (1970) Respiratory gases of synovial fluids. An approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis. Am J Med 49: 223–231Google Scholar
  29. 29.
    Gutierrez G, Pohil RJ, Strong R (1988) Effect of flow on 02 consumption during progressive hypoxemia. J Appl Physiol 65: 601–607PubMedGoogle Scholar
  30. 30.
    Cain SM, Bredle DL (1989) Actions of a-dopaminergic and 02-adrenergic agonist on 02-extraction by canine skeletal muscle. ISOTT Goettingen (abstract)Google Scholar
  31. 31.
    Lennox W, Gibbs F, Gibbs E (1935) Relationship of unconsciousness to cerebral blood flow and to anoxemia. Arch Neurol Psycho] 34: 1001–1010Google Scholar
  32. 32.
    Shires GT, Carrico CJ, Canizaro PC (1973) Major problems in clinical surgery: Shock. Saunders, PhiladelphiaGoogle Scholar
  33. 33.
    Samsel RW, Nelson DP, Sanders WM, Wood LDH, Shumacker PT (1988) Effect of endotoxin on systemic and skeletal muscle 02 extraction. J Appl Physiol 65: 1377–1382PubMedGoogle Scholar
  34. 34.
    Cain SM (1984) Supply dependency of oxygen uptake in ARDS: myth or reality? Am J Med Scie 288: 119–124Google Scholar
  35. 35.
    Dantzker D (1989) Oxygen delivery and utilization in sepsis. Crit Care Clinics 5: 81–98Google Scholar
  36. 36.
    Groeneveld ABJ, Bronsveld W, Thijs LG (1986) Hemodynamic determinants of mortality in human septic shock. Surgery 99: 140–153PubMedGoogle Scholar
  37. 37.
    Miller MJ, Cook W, Mithoefer J (1979) Limitations of the use of mixed venous P02 as an indicator of tissue hypoxia. Clin Res 27: 401AGoogle Scholar
  38. 38.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee T (1986) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186Google Scholar
  39. 39.
    Dhainault J-F, Huyghebaert M-F, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–541Google Scholar
  40. 40.
    Hartl WH, Gunther B, Inthorn D, Heberer G (1988) Reactive hyperemia in patients with septic conditions. Surgery 103: 440–444PubMedGoogle Scholar
  41. 41.
    Nelson DP, Samsel RW, Wood LD, Shumacker PT (1988) Pathological dependence of systemic and intestinal 02 uptake during endotoxemia. J Appl Physiol 64: 2410–2419PubMedGoogle Scholar
  42. 42.
    Bredle DL, Samsel RW, Shumacker PT, Cain SM (1989) Critical 02 delivery to skeletal muscle at high and low P02 in endotoxemic dogs. J Appl Physiol 66: 2553–2558PubMedGoogle Scholar
  43. 43.
    Goris RJA, Kley van der AJ, Beerthuizen GIJM, Kreuzer FJA, Kimmich HP, Koning de J (1984) Early detection of E. coli sepsis by muscle P02 assessment. Bull Clin Rev Burn Inj 1: 17–19Google Scholar
  44. 44.
    Wells C, Parks D, Brown R, Hilton J (1978) Tissue gas in response to endotoxin administration. Proceedings of the 5th World Congress on Burn injuries, Stockholm, p 61Google Scholar
  45. 45.
    Hiller C, Bone R, Wilson F (1979) Comparison of tissue and mixed venous oxygen tension in endotoxin shock. Am Rev Respir Dis 119: 127Google Scholar
  46. 46.
    Beerthuizen GIJM, Goris RJA, Kreuzer FJA (1989) Skeletal muscle pO2 during imminent shock. Arch Em Med 6: 172–182Google Scholar
  47. 47.
    Fry DE, Silver BB, Rink RD, VanArsdall LR, Flint LM (1979) Hepatic cellular hypoxia in murine peritonitis. Surgery 85: 652–661PubMedGoogle Scholar
  48. 48.
    Astiz ME, Rackow EC, Weil MH (1986) Oxygen delivery and utilization during rapidly fatal septic shock in rats. Circ Shock 20: 281–290PubMedGoogle Scholar
  49. 49.
    Jacobs DO, Maris J, Fried R, (1988) In vivo phosphorus 31 magnetic resonance spectroscopy of rat hindlimb skeletal muscle during sepsis. Arch Surg 123: 1425–1428Google Scholar
  50. 50.
    Kotyk JJ, Hotchkiss RS, Karl IE, Ackerman JJH (1988) The effect of sepsis on skeletal muscle glucose metabolism. A 13CNMR investigation. Book of Abstracts of the Seventh Ann Meeting Society of Magnetic Resonance in Medicine, vol 1. San Francisco, p 446Google Scholar
  51. 51.
    Reinhart K, Bloos F, Konig F, Hannemann L, Kuss B (1989) Oxygen-transport related variables and muscle tissue oxygenation in critically ill patients. ISOTT Goettingen (abstract)Google Scholar
  52. 52.
    Rhodes GR, Newell JC, Shah D, et al (1978) Increased oxygen consumption accompanying increased oxygen delivery with hypertonic mannitol in adult respiratory distress syndrome. Surgery 84: 490–497PubMedGoogle Scholar
  53. 53.
    Bernard JR, Swindle BB, Meredith MJ, Carroll FE, Higging SB (1989) Effect of Nacetylcysteine repletion of glutathione in patients with ARDS. In: Present Concepts in ARDS, 24th Annual Congress of SEPCR, LausanneGoogle Scholar
  54. 54.
    Cronenwett JL, Lindenauer SM (1976) Arteriovenous shunting in the canine hindlimb with sepsis. Surg Forum 27: 24–26PubMedGoogle Scholar
  55. 55.
    Caldwell MD, Shearer J, Morris A, Mastrofrancesco B, Henry W, Albina JE (1984) Evidence for aerobic glycolysis in X-carragenan-wounded skeletal muscle. J Surg Res 37: 63–68PubMedGoogle Scholar
  56. 56.
    Hopkins RW (1970) Septic shock: hemodynamic cost of inflammation. Arch Surg 101: 298–307PubMedGoogle Scholar
  57. 57.
    Aulick LH, Baze WB, McLeod CG, Wilmore DW (1980) Control of blood flow in large surface wounds. Ann Surg 191: 249–258PubMedGoogle Scholar
  58. 58.
    Blalock A, Bradburn H (1930) Distribution of the blood in shock. The oxygen content of venous blood from different localities in shock produced by hemorrhage, by histamine and by trauma. Arch Surg 20: 26Google Scholar
  59. 59.
    Lewis DH, Lim RC (1970) Studies on the circulation pathophysiology of trauma. Acta Orthop Scand 41: 17–36PubMedGoogle Scholar
  60. 60.
    Wilmore DW, Aulick LH, Mason AD, Pruitt BA (1977) Influences of the burn wound on local and systemic responses to injury. Ann Surg 186: 444–458PubMedGoogle Scholar
  61. 61.
    Aulick LH, Wilmore DW, Manson AD, Pruitt BA (1982) Depressed reflex vasomotor control of the burn wound. Cardiol Res 15: 113–119Google Scholar
  62. 62.
    Beerthuizen GIJM, Goris RJA, Kley van der AJ, Kimmich HP, Kreuzer F (1986) Early detection of burn shock by muscle oxygen pressure assessment. Bull Clin Rev Burn Inj 3: 29–33Google Scholar
  63. 63.
    Chang N, Goodson WH, Gottrup F, Hunt TK (1983) Direct measurement of wound and tissue oxygen tension in postoperative patients. Ann Surg 197: 470–478PubMedGoogle Scholar
  64. 64.
    Goetzl EJ, Falchuk KH, Zeiger LS, et al (1971) A Physiological approach to the assessment of disease activity in rheumatoid arthritis. J Clin Invest 50: 1167–1180PubMedGoogle Scholar
  65. 65.
    Lund-Oleson K (1970) Oxygen tensions in synovial fluids. Arthritis Rheum 13: 769–776Google Scholar
  66. 66.
    Treuhaft PS, McCarty DJ (1971) Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum 14: 475–484PubMedGoogle Scholar
  67. 67.
    Ropes MV, Bauer W (1953) Synovial fluid changes in joint disease. Harvard University Press, Boston, p 74Google Scholar
  68. 68.
    Niinikoski J, Einola S (1977) Postoperative synovial fluid. Metabolic response to meniscectomy or synovectomy. Acta Orthop Scand 48: 129–137Google Scholar
  69. 69.
    McNeill TA (1965) Venous oxygen saturation and blood flow during reactive hyperaemia in the human forearm. J Physiol 134: 195–201Google Scholar
  70. 70.
    Fontijne WPJ, Mook PH, Elstrodt JM, Schraffordt Koops H, Oldhoff J, Wildevuur CRH (1985) Isolated hindlimb perfusion in dogs: the effect of perfusion pressures on the oxygen supply (PtO2 histogram) to the skeletal muscle. Surgery 97: 278–284PubMedGoogle Scholar
  71. 71.
    Shah DM, Powers SR, Stratton HH, Newell JC (1981) Effects of hypertonic mannitol on oxygen utilization in canine hindlimbs following shock. J Surg Res 30: 593–601PubMedGoogle Scholar
  72. 72.
    Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JE (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82: 9–15PubMedGoogle Scholar
  73. 73.
    Clyne CA, Ryan J, Webster JHH, Chant ADB (1983) Oxygen tension on the skin of ischemic legs. Am J Surg 43: 315–318Google Scholar
  74. 74.
    McEwan AJ, McA Ledingham I (1971) Blood flow characteristics and tissue nutrition in apparently ischaemic feet. Br Med J 3: 220–224PubMedPubMedCentralGoogle Scholar
  75. 75.
    Wilkinson D, Vowden P, Parkin A, Robinson PJ, Kester RC (1987) A reliable and readily available method of measuring limb blood flow in intermittent claudication. Br J Surg 74: 516–519PubMedGoogle Scholar
  76. 76.
    Smith AR, Sonneveld GJ, Kort WJ, Meulen van der JC (1983) Clinical application of transcutaneous oxygen measurements in replantation surgery and free tissue transfer. J Hand Surg 8: 139: 145Google Scholar
  77. 77.
    Klintmalm GBG, Cronestrand R, Wennmalm A, Lundgren G, Groth CG (1984) Human renal allograft blood flow, oxygen extraction, and prostaglandin release: their bearing on graft function. Surgery 95: 427–432PubMedGoogle Scholar
  78. 78.
    Lovelace DR, Short L, Rink RD (1979) Hepatic Oxygen supply in reversible and irreversible hemorrhagic shock. J Surg Res 26: 120–128PubMedGoogle Scholar
  79. 79.
    Proctor HJ, Palladino GW, Fillipo D (1988) Failure of autoregulation after closed head injury: an experimental model. J Trauma 28: 347–352PubMedGoogle Scholar
  80. 80.
    Syrota A, Castaing M, Rougemont D, et al (1983) Tissue acid-base balance and oxygen metabolism in human cerebral infarction studied with positron emission tomography. Ann Neurol 14: 419–428PubMedGoogle Scholar
  81. 81.
    Hakim AM, Pokrupa RP, Villanueva J, et al (1987) The effect of spontaneous reperfusion on metabolic function in early human cerebral infarcts. Ann Neurol 21: 279–289PubMedGoogle Scholar
  82. 82.
    Landau SE, Alexander RS, Powers SM, Stratton HH, Goldfarb RY (1982) Tissue oxygen exchange and reactive hyperemia following microembolization. J Surg Res 32: 38–43PubMedGoogle Scholar
  83. 83.
    Gaehtgens P, Benner KU, Schickendantz S (1976) Nutritive and non-nutritive blood flow in canine skeletal muscle after partial microembolization. Pfluegers Arch 361: 183–189Google Scholar
  84. 84.
    Cain SM, King CE, Chapler CK (1988) Effects of time and microembolization on 02 extraction by dog hindlimb in hypoxia. J Crit Care 3: 89–95Google Scholar
  85. 85.
    Ellsworth ML, Goldfarb RD, Alexander RS, Idell DR, Powers SM (1981) Microembolization induced oxygen utilization impairment in the canine gracilis muscle. Adv Shock Res 5: 89–99PubMedGoogle Scholar
  86. 86.
    Goris RJA, Kolkman WF, Leenen LPH, Bebber van IPT, Corstens FHM, Heerschap A (1988) Symptomatologie van posttraumatische dystrofie. In: Es van JC, Joossens JV (eds) Het medisch jaar. Bohn, Scheltema and Holkema, Utrecht/Antwerp, pp 165–177Google Scholar
  87. 87.
    Stolte BH, Stolte JB, Leyten J (1970) De pathofysiologie van het schouder-hand syndrom. Ned T Geneesk 114: 1208–1209PubMedGoogle Scholar
  88. 88.
    Christensen K, Henriksen O (1983) The reflex sympathetic dystrophy syndrome. Scand J Rheumatol 12: 263–267PubMedGoogle Scholar
  89. 89.
    Bolliger A (1954) Gefäßreaktionen und ihre Rolle bei der Entstehung des Sudeckschen Syndromes. Helv Chir Acta 21: 61–86PubMedGoogle Scholar
  90. 90.
    Goris RJA, Bebber van IPT, Leenen LPH, Corstens FHM (1987) Are toxic oxygen radicals involved in the pathogenesis of reflex sympathetic dystrophy? In: Dominioni L, Cuschieri A (eds) Proceedings of the 1st meeting of the ADSE, Pavia, pp 34–36Google Scholar
  91. 91.
    Goris RJA, Dongen van LM, Winters HAH (1987) Are toxic oxygen radicals involved in the pathogenesis of reflex sympathetic dystrophy? Free Rad Res Comm 3: 13–18Google Scholar
  92. 92.
    Partsch H (1978) Gestörte Gefäßregulation bei ulzeromutilierenden Neuropathien der unteren Extremitäten. Vasa 7: 119–125PubMedGoogle Scholar
  93. 93.
    Scarpello JH, Martin TR, Ward JD (1980) Ultrasound measurements of pulse wave velocity in the peripheral arteries of diabetic subjects. Clin Sci Mol Med 58: 53–57Google Scholar
  94. 94.
    Edmonds ME, Roberts VC, Watkins PJ (1982) Blood flow in the diabetic neuropathic foot. Diabetologia 22: 9–15PubMedGoogle Scholar
  95. 95.
    Archer AG, Roberts VC, Watkins PJ (1984) Blood flow in painful diabetic neuropathy. Diabetologia 27: 563–567PubMedGoogle Scholar
  96. 96.
    Rayman G, Hassan A, Tooke JE (1986) Blood flow in the skin of the foot related to posture in diabetes mellitus. Br Med J 292: 87–90Google Scholar
  97. 97.
    Irwin ST, Gilmore J, McGrann S, Hood J, Allen JA (1988) Blood flow in diabetics with foot lesions due to “small vessel disease”. Br J Surg 75: 1201–1206PubMedGoogle Scholar
  98. 98.
    Segeren C, Netten P, Wollersheim H, Thien Th, Lutterman J (1988) Capillary “steal” phenomenon in the skin of diabetes patients: a result of high anastomotic blood flow? Int J Microcircul S139Google Scholar
  99. 99.
    Bazex A, Montastruc P, Bazex J, Zemb J-P (1975) Acropathie ulcéro-mutilante. Etude hémo-dynamique. Bull Soc Fr Dermato-Syphiligr 82: 280–290Google Scholar
  100. 100.
    Boulton AJM, Scarpello JHB, Ward JD (1982) Venous oxygenation in the diabetic neuropathic foot: evidence of arteriovenous shunting? Diabetologia 22: 6–8PubMedGoogle Scholar
  101. 101.
    Wyss CR, Matsen FA, Simmons CW, Burgess EM (1984) Transcutaneous oxygen tension measurements on limbs of diabetic and nondiabetic patients with peripheral vascular disease. Surgery 95: 339–346PubMedGoogle Scholar
  102. 102.
    Partsch H (1984) Hyperaemic hypoxia in venous ulceration. Br J Dermatol 110: 249–250PubMedGoogle Scholar
  103. 103.
    Blalock A (1929) Oxygen content of blood in patients with varicose veins. Arch Surg 19: 898–905Google Scholar
  104. 104.
    Piulacks P, Barraquer V (1953) Pathogenic study of varicose veins. Angiology 4: 59–100Google Scholar
  105. 105.
    Lindemayr W, Loefferer O, Mostbeck A, Partsch H (1972) Arteriovenous shunts in primary varicosis? A critical essay. Vasc Surg 6: 9–14PubMedGoogle Scholar
  106. 106.
    Hehne HJ, Locher JT, Waibel PP, Fridrich R (1974) Zur Bedeutung arteriovenöser Anastomosen bei der primären Varicosis und der chronischvenösen Insuffizienz. Vasa 3: 396–398PubMedGoogle Scholar
  107. 107.
    Borzykowski M, Krahenbuhl B (1981) Mesure noninvasive de l’oxygénation cutanée en cas d’ulcères chroniques des membres inférieurs. Schweiz Med Wschr 11: 1972–1974Google Scholar
  108. 108.
    Franzeck UK, Bolliger A, Huch R, Huch A (1984) Transcutaneous oxygen tension and capillary morphologic characteristics and density in patients with chronic venous incompetence. Circulation 70: 806–811PubMedGoogle Scholar
  109. 109.
    Falanga V, Moosa HH, Nemeth AJ, Alstadt SP, Eaglstein WH (1987) Dermal pericapillary fibrin in venous disease and venous ulceration. Arch Dermatol 123: 620–623PubMedGoogle Scholar
  110. 110.
    Burnand KG, Whimster I, Naidoo A, Browse NL (1982) Pericapillary fibrin in the ulcer-bearing skin of the leg: the cause of lipodermatosclerosis and venous ulceration. Br Med J 285: 1071–1072Google Scholar
  111. 111.
    Burton JL (1983) Venous hypertension, fibrin and leg ulcers. Br J Dermatol 109: 229–231PubMedGoogle Scholar
  112. 112.
    Burnard KG, Clemenson G, Morland M, Jarett PEM, Browse NL (1980) Venous lipodermatosclerosis: treatment by fibrinolytic enhancement and elastic compression. Br Med J 280: 7–11Google Scholar
  113. 113.
    Cronenwett JL, Lindenauer SM (1977) Direct measurement of arteriovenous anastomotic blood flow after lumbar sympathectomy. Surgery 82: 82–89PubMedGoogle Scholar
  114. 114.
    Delaney J, Scarpino J (1973) Limb arteriovenous shunting following sympathetic denervation. Surgery 73: 202–206PubMedGoogle Scholar
  115. 115.
    Rutherford RB, Valenta J (1971) Extremity blood flow and distribution: The effects of arterial occlusion, sympathectomy and exercise. Surgery 70: 332Google Scholar
  116. 116.
    Kreuzer W, Keiler A, Salem G (1975) Nutritional effects following lumbar sympathectomy in arterial occlusive disease. Thoraxchirurgie 23: 475–478Google Scholar
  117. 117.
    Davis MT, Greene NM (1959) Polarographic studies of skin oxygen tension following sympathetic denervation. J Appl Physiol 14: 961–965PubMedGoogle Scholar
  118. 118.
    Beaney RP, Lammertsma AA, Jones T, McKenzie CG, Hainan KE (1984) Positron emission tomography for in vivo measurement of regional blood flow, oxygen utilization, and blood volume in patients with breast carcinoma. Lancet is 131–134Google Scholar
  119. 119.
    Silverman HJ, Abrams J, Rubin LJ (1988) Effects of Interleukin-2 on oxygen delivery and consumption in patients with advanced malignancy. Chest 94: 816–821PubMedGoogle Scholar
  120. 120.
    Wilson JR, Martin JL, Ferraro N, Weber KT (1983) Effect of hydralazine on perfusion and metabolism in the leg during upright bicycle exercise in patients with heart failure. Circulation 68: 425–432PubMedGoogle Scholar
  121. 121.
    Lozman J, Dutton RE, English M, Powers SR (1975) Cardiopulmonary adjustments following single high dosage administration of methylprednisolone in traumatized man. Ann Surg 181: 317–324PubMedGoogle Scholar
  122. 122.
    Rhodes GR, Taylor M, Newell JC, Shah DM, Scovill WA, Powers SR (1981) Effects of dopamine, ethanol, and mannitol on cardiopulmonary function in patients with adult respiratory distress syndrome. J Thorac Cardiovasc Surg 82: 203–210PubMedGoogle Scholar
  123. 123.
    Bihari D, Smithies M, Gimson A, Tinker J (1987) The effects of vasodilatation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317: 397–403PubMedGoogle Scholar
  124. 124.
    Goris RJA, Boekhorst to TPA, Nuytinck JKS, Gimbrere JSF (1985) Multiple organ failure. Generalized autodestructive inflammation? Arch Surg 120: 1099–1115Google Scholar
  125. 125.
    Goris RJA, Boekholtz WKF, Bebber van IPT, Nuytinck JKS, Schillings PHM (1986) Multiple organ failure and sepsis without bacteria. An experimental model. Arch Surg 121: 897–901Google Scholar
  126. 126.
    Nuytinck JKS, Goris RJA, Weerts JGE, Schillings PHM, Schuurmans-Stekhoven JH (1986) Acute generalized microvascular injury by activated complement and hypoxia: the basis of the adult respiratory distress syndrome and multiple organ failure? Br J Exp Pathol 67: 537–546PubMedPubMedCentralGoogle Scholar
  127. 127.
    Nuytinck JKS, Goris RJA, Redl H, Schlag G, Munster van PJJ (1986) Posttraumatic complications and inflammatory mediators. Arch Surg 121: 886–890PubMedGoogle Scholar
  128. 128.
    Nuytinck JKS, Offermans XJ, Kubat K, Goris RJA (1988) Whole body inflammation in trauma patients. An autopsy study. Arch Surg 123: 1519–1524Google Scholar
  129. 129.
    Tracey KJ, Lowry SF, Fahey TJ, et al (1988) Cachectin/TNF mediates the pathophysiological effects of bacterial endotoxin and lipopolysaccharide. Progr Clin Biol Res 272: 77–88Google Scholar
  130. 130.
    Dorinsky PM, Costello JL, Gadek JE (1988) Oxygen distribution and utilization after phorbol myristate acetate-induced lung injury. Am Rev Respir Dis 138: 1454–1463PubMedGoogle Scholar
  131. 131.
    Natanson C, Eichenholz PW, Danner RL, et al (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169: 823–883PubMedGoogle Scholar
  132. 132.
    Ognibene FP, Rosenberg SA, Skibber J, Shelhamer JH, Lotze MT, Parillo JE (1986) Interleukin-2 hemodynamics mimic septic shock. Crit Care Med 14:352ASGoogle Scholar
  133. 133.
    Shedlovsky SI, Swim AT, Robinson JM, Gallichio VS, Cohen DA, McClain CJ (1987) Interleukin-1 (IL-1) depresses cytochrome P450 levels and activities in mice. Life Sciences 40: 2331–2336Google Scholar
  134. 134.
    Del Maestro RF, Thaw HH, Bjoerk J, Planker M, Arfors K-E (1980) Free radicals as mediators of tissue injury. Acta Physiol Scand 492: 43–57Google Scholar
  135. 135.
    Brigham KL (1986) Role of free radicals in lung injury. Chest 89: 859–863PubMedGoogle Scholar
  136. 136.
    Parks DA, Bulkley GB, Granger DN (1983) Role of oxygen free radicals in shock, ischemia, and organ preservation. Surgery 94: 428–432PubMedGoogle Scholar
  137. 137.
    Otani H, Omoto K, Tanaka K, et al (1985) Reperfusion injury induced by augmented oxygen uptake in the initial reperfusion period. J Mol Cell Cardiol 17: 457–454PubMedGoogle Scholar
  138. 138.
    Tiggeler RGWL, Berden JHM, Hoitsma AJ, Koene RAP (1985) Prevention of acute tubular necrosis in cadaveric kidney transplantation by the combined use of mannitol and moderate hydration. Ann Surg 201: 246–251PubMedGoogle Scholar
  139. 139.
    Shirmer WJ, Shirmer JM, Naff GB, Fry DE (1987) Heparin effect on the natural history of sepsis. Circ Shock 21: 363Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. Goris

There are no affiliations available

Personalised recommendations