Skip to main content

Cellular Metabolism in Sepsis

  • Chapter
Tissue Oxygen Utilization

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 12))

Abstract

The mechanism, or mechanisms, of cellular dysfunction during septic shock are not well understood. These mechanisms may include decreases in peripheral O2 transport, defective tissue O2 extraction, venous pooling of blood, extravasation of fluid into the interstitium, micro-circulatory abnormalities produced by the release of vasoactive mediators resulting in a regional mismatch of perfusion to cellular O2 requirements, the action of oxygen free radical species, the inhibitory effect on cardiac function of a myocardial depressant substance, and the direct noxious cellular effect of endotoxin or a mediator of sepsis [1–8].

Supported in part by a grant from the National Institutes of Health (HL41415-01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cain SM (1986) Assessment of tissue oxygenation. Crit Care Clin 2: 537–550

    PubMed  CAS  Google Scholar 

  2. Sibbald WJ, Raper F, Bersten D (1989) Circulatory abnormalities in the sepsis syndrome. In: Reinhart K, Eyrich E (eds) Sepsis: An interdisciplinary challenge. Springer, Berlin Heidelberg New York Tokyo, pp 97–105

    Google Scholar 

  3. Reinhart K (1989) Oxygen transport and tissue oxygenation in sepsis and septic shock. In: Reinhart K, Eyrich K (eds) Sepsis: An interdisciplinary challenge. Springer, Berlin Heidelberg New York Tokyo, pp 125–131

    Google Scholar 

  4. Schremmer B, Dhainaut JF (1990) Heart failure in septic shock: Effects of inotropic support. Crit Care Med 18: S49 - S55

    Article  PubMed  CAS  Google Scholar 

  5. Morgan RA, Manning, Coran AG, et al (1988) Oxygen free radical activity during live E. coli septic shock in the dog. Circ Shock 25: 319–323

    CAS  Google Scholar 

  6. Gutierrez G, Lund N, Bryan-Brown CW (1989) Cellular oxygen utilization during multiple organ failure. Crit Care Clin 5: 271–287

    PubMed  CAS  Google Scholar 

  7. Peevy KJ, Reed T, Chartrand SA, et al (1986) The comparison of myocardial dysfunction in three forms of experimental septic shock. Pediatr Res 20: 1240–1242

    Article  PubMed  CAS  Google Scholar 

  8. Parrillo JE, Burch C, Shelhamer JH, et al (1985) A circulating myocardial depressant substance in humans with septic shock. J Clin Invest 76: 1539–1553

    Article  PubMed  CAS  Google Scholar 

  9. Nelson DP, Samsel RW, Wood LDH, et al (1988) Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol 64: 2410–2419

    PubMed  CAS  Google Scholar 

  10. Meyrick B, Brigham KL (1983) Acute effects of E. coli endotoxin on the pulmonary microcirculation of anesthetized sheep structure: function relationships. Lab Invest 48: 458–470

    PubMed  CAS  Google Scholar 

  11. Grisham MB, Everse J, Janssen HF (1988) Endotoxemia and neutrophil activation in vivo. Am J Physiol 254: H1017 - H1022

    PubMed  CAS  Google Scholar 

  12. Gutierrez G, Lund N, Palizas F. Rabbit skeletal muscle PO2 during hypodynamic sepsis. Chest (submitted)

    Google Scholar 

  13. Kessler M, Hoper J, Krumme BA (1976) Monitoring of tissue perfusion and cellular function. Anesthesiology 45: 184–197

    Article  PubMed  CAS  Google Scholar 

  14. Gutierrez G, Lund N, Acero AL, et al (1989) Relationship of venous PO2 to muscle P02 during hypoxemia. J Appl Physiol 67: 1093–1099

    PubMed  CAS  Google Scholar 

  15. Astiz ME, Rackow EC, Wel MH (1986) Oxygen delivery and utilization during rapidly fatal septic shock in rats. Circ Shock 20: 281–290

    PubMed  CAS  Google Scholar 

  16. Gutierrez G, Marini C, Acero A, et al (1990) Skeletal muscle PO, during hypoxemia and isovolemic anemia. J Appl Physiol 68 (5): 2047–2053

    PubMed  CAS  Google Scholar 

  17. Gutierrez G, Marini C, Acero A, et al (1982) O2 transport and high energy phosphate utilization during E. coli endotoxemia. Am Rev Respir Dis 139: A445

    Google Scholar 

  18. Jepson MM, Cox M, Bates PC, et al (1987) Regional blood flow and skeletal muscle energy status in endotoxemic rats. Am J Physiol 252: E581 - E587

    PubMed  CAS  Google Scholar 

  19. Fink MP, Cohn SM, Lee PC, et al (1989) Effect of lipopolysaccharide on intestinal mucosal hydrogen concentration in pigs: Evidence of gut ischemia in a normodynamic model of septic shock. Crit Care Med 17: 641–646

    Article  PubMed  CAS  Google Scholar 

  20. Fiddian-Green R, Pittenger G, Whitehouse WM (1982) Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa. J Surg Res 33: 39–46

    Article  PubMed  CAS  Google Scholar 

  21. Fiddian-Green RG (1989) Studies in splanchnic ischemia and multiple organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) Splanchnic ischemia and multiple organ failure. Mosby, St. Louis, pp 349–363

    Google Scholar 

  22. Romanosky AJ, Bagby GJ, Bockman EL, et al (1980) Increased muscle glucose uptake and lactate release after endotoxin administration. Am J Physiol 239: E311 - E316

    PubMed  CAS  Google Scholar 

  23. Lundsgaard-Hansen P, Pappova E, Urbaschek B, et al (1972) Circulatory deterioration as the determinant of oxygen energy metabolism in endotoxin shock. J Surg Res 13: 282–288

    Article  PubMed  CAS  Google Scholar 

  24. Hotchkiss RS, Song SK, Ling CS, et al (1990) Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: a 2H, 23Na-NMR study. Am J Physiol 258: R21 - R31

    PubMed  CAS  Google Scholar 

  25. Vary TC, Siegel JH, Nakatani T, et al (1986) Effect of sepsis on activity of PDH complex in skeletal muscle and liver. Am J Physiol 250: E634 - E640

    PubMed  CAS  Google Scholar 

  26. Kilpatrick Smith L, Erecinska M (1983) Cellular effects of endotoxin in vitro I. Effect of endotoxin on mitochondrial substrate metabolism and intracellular calcium. Circ Shock 11: 85–99

    Google Scholar 

  27. Park R, Arieff AI (1982) Treatment of lactic acidosis with dichloroacetate in dogs. J Clin Invest 70: 853–862

    Article  PubMed  CAS  Google Scholar 

  28. Vary TC, Siegel JH, Tall BD, et al (1988) Metabolic effect of partial reversal of pyruvate dehydrogenase activity by dichloroacetate in sepsis. Circ Shock 24: 3–38

    PubMed  CAS  Google Scholar 

  29. Clowes GHA, O’Donnell TF, Ryan NT, et al (1974) Energy metabolism in sepsis: Treatment based on different patterns in shock and high output stage. Ann Surg 179: 684–696

    Article  PubMed  Google Scholar 

  30. Mela L, Bacalzo LV, Miller LD (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 220: 571–576

    PubMed  CAS  Google Scholar 

  31. Poderoso JJ, Boveris A, Jorge MA, et al (1978) Funcion mitocondrial en el shock septico. Medicina 38: 371–377

    PubMed  CAS  Google Scholar 

  32. Dawson KL, Geller ER, Kirkpatrick JR (1988) Enhancement of mitochondrial function in sepsis. Arch Surg 123: 241–244

    Article  PubMed  CAS  Google Scholar 

  33. Pappova E, Urbaschek B, Heitmann L, et al (1971) Energy-rich phosphates and glucose metabolism in early endotoxin shock. J Surg Res 11: 506–512

    Article  PubMed  CAS  Google Scholar 

  34. Chaudry IH, Wichterman KA, Baue AE (1979) Effect of sepsis on tissue adenine nucleotide levels. Surgery 85: 205–211

    PubMed  CAS  Google Scholar 

  35. Pasque MK, Murphy CE, Van Tright P, et al (1983) Myocardial adenosine triphosphate levels during early sepsis. Arch Surg 118: 1437–1440

    Article  PubMed  CAS  Google Scholar 

  36. Myrvold HE, Enger E, Haljamae H (1975) Early effects of endotoxin on tissue phosphagen levels in skeletal muscle and liver of the dog. Eur Surg Res 7: 181–192

    Article  PubMed  CAS  Google Scholar 

  37. McDonough KH, Henry JJ, Lang CH, et al (1986) Substrate utilization and high energy phosphate levels of hearts from hyperdynamic septic rats. Circ Shock 18: 161–170

    PubMed  CAS  Google Scholar 

  38. Hotchkiss RS, Long RC, Hall JR, et al (1989) An in vivo examination of rat brain during sepsis with 31P-NMR spectroscopy. Am J Physiol 257: C1055 - C1061

    PubMed  CAS  Google Scholar 

  39. Bessman SP (1985) The creatine-creatine phosphate energy shuttle. Ann Rev Biochem 54: 831–862

    Article  PubMed  CAS  Google Scholar 

  40. Vincent JL, Van der Linden P (1990) Septic shock: Particular type of acute circulatory failure. Crit Care Med 18: S70–S74

    Article  PubMed  CAS  Google Scholar 

  41. Shoemaker WC, Kram HB, Appel PL (1990) Therapy of shock based on pathophysiology, monitoring, and outcome prediction. Crit Care Med 18: S19–S25

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutierrez, G., Dubin, A. (1991). Cellular Metabolism in Sepsis. In: Gutierrez, G., Vincent, J.L. (eds) Tissue Oxygen Utilization. Update in Intensive Care and Emergency Medicine, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84169-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84169-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52472-4

  • Online ISBN: 978-3-642-84169-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics