Skip to main content

Tissue Oxygen Utilization in Septic Shock

  • Chapter
Tissue Oxygen Utilization

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 12))

Abstract

The changes of hemodynamic and oxygen transport variables in human septic shock are well documented [1]. They are essentially characterized by a hyperdynamic circulatory state associated with an increased cardiac output (CO), a decreased systemic vascular resistance (SVR) and a narrowed arterial-mixed venous oxygen difference (a-vO2) together with elevated arterial blood lactate levels. Therefore, when arterial oxygenation is maintained, oxygen delivery (DO2) is as a consequence usually supranormal. This implies a defective tissue oxygen extraction as the most important mechanism that limits oxygen consumption (\( \dot{V}{{O}_{2}} \)) in septic shock. Throughout a septic episode the basic pathophysiologic problem seems to be a disparity between the uptake of oxygen and the demand of oxygen in the tissues as manifested by increased blood lactate levels. Limitation of oxygen uptake may significantly contribute to morbidity and mortality by predisposing to multiple organ failure. Several observations suggest that inadequate tissue oxygenation is a central mechanism mediating the widespread and irreversible tissue damage that is associated with multiple organ failure and a fatal outcome [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thijs LG, Groeneveld ABJ (1987) The circulatory defect in septic shock. In: Vincent J-L, Thijs LG (eds) Septic shock — European view (Update in intensive care and emergency medicine vol 4 ) Springer, Berlin Heidelberg New York Tokyo, pp 161–178

    Google Scholar 

  2. Shoemaker WC, Appel PL, Kram HB (1988) Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 16: 1117–1120

    Article  PubMed  CAS  Google Scholar 

  3. Bihari D, Smithies M, Gimson A, Tinker J (1987) The effect of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317: 397–403

    Article  PubMed  CAS  Google Scholar 

  4. Gump FE, Price JB Jr, Kinney JM (1970) Whole body and splanchnic blood flow and oxygen consumption measurements in patients with intraperitoneal infection. Ann Surg 171: 321–328

    Article  PubMed  CAS  Google Scholar 

  5. Finley RJ, Duff JH, Holliday RL, Jones D, Marchuk JB (1975) Capillary muscle blood flow in human sepsis. Surgery 78: 87–94

    PubMed  CAS  Google Scholar 

  6. Siegel JH, Cerra FB, Coleman B, et al (1979) Physiologic and metabolic correlations in human sepsis. Surgery 86: 163–193

    PubMed  CAS  Google Scholar 

  7. Gump FE, Price JB Jr, Kinney JM (1969) The relationship of blood flow and oxygen consumption in surgical infections. Curr Topics Surg Res 2: 385–391

    Google Scholar 

  8. Cohn JD, Greenspan M, Goldstein CR, Gudwin AL, Siegel JH, Del Guercio LRM (1968) Arteriovenous shunting in high cardiac output shock syndromes. Surg Gynecol Obstet 127: 282–288

    PubMed  CAS  Google Scholar 

  9. Houtchens BA, Westenskow DR (1984) Oxygen consumption in septic shock: a collective review. Circ Shock 13: 361–384

    PubMed  CAS  Google Scholar 

  10. Siegel JH, Greenspan M, Del Guercio LRM (1967) Abnormal vascular tone, defective oxygen transport and myocardial failure in human septic shock. Ann Surg 165: 504–517

    Article  PubMed  CAS  Google Scholar 

  11. Duff JH, Groves AC, McLean APH, LaPointe R, MacLean LD (1969) Defective oxygen consumption in septic shock. Surg Gynecol Obstet 128: 1051–1060

    PubMed  CAS  Google Scholar 

  12. Nishijima H, Weil MH, Shubin H, Cavanilles J (1973) Hemodynamic and metabolic studies associated with gramnegative bacteremia. Medicine 32: 287–294

    Article  Google Scholar 

  13. Shoemaker WC (1987) Relation of oxygen transport patterns of the pathophysiology and therapy of shock states. Intensive Care Med 13: 230–243

    Article  PubMed  CAS  Google Scholar 

  14. Wolf VG, Cotev S, Perel A, Manny J (1987) Dependence of oxygen consumption on cardiac output in sepsis. Crit Care Med 15: 198–203

    Article  PubMed  CAS  Google Scholar 

  15. Abraham E, Bland RD, Cobo JC, Shoemaker WC (1984) Sequential cardiorespiratory patterns associated with outcome in septic shock. Chest 85: 75–80

    Article  PubMed  CAS  Google Scholar 

  16. Groeneveld ABJ, Bronsveld W, Thijs LG (1986) Hemodynamic determinants of mortality in human septic shock. Surgery 99: 140–152

    PubMed  CAS  Google Scholar 

  17. Groeneveld ABJ, Kester ADM, Nauta JJP, Thijs LG (1987) Relation of arterial blood lactate to oxygen delivery and hemodynamic variables in human shock states. Circ Shock 22: 35–53

    PubMed  CAS  Google Scholar 

  18. Gilbert EM, Haupt MT, Mandanar RY, Huaringa AJ, Carlson RW (1986) The effect of fluid loading, blood transfusion and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis 134: 873–878

    PubMed  CAS  Google Scholar 

  19. Astiz ME, Rackow EC, Falk JL, Kaufman BS, Weil MH (1987) Oxygen delivery and consumption in patients with hyperdynamic septic shock. Crit Care Med 15: 26–28

    Article  PubMed  CAS  Google Scholar 

  20. Schumacker PT, Cain SM (1987) The concept of a critical oxygen delivery. Intensive Care Med 13: 223–229

    Article  PubMed  CAS  Google Scholar 

  21. Johnson PC (1986) Autoregulation of blood flow. Circ Res 59: 483–495

    PubMed  CAS  Google Scholar 

  22. Ferguson JL, Spitzer JJ, Miller HI (1978) Effects of endotoxin on regional blood flow in the unanesthetized guinea pig. J Surg Res 25: 236–243

    Article  PubMed  CAS  Google Scholar 

  23. Martinell S, Högström H, Haglund U (1987) Cardiac output and its distribution in peritonitis (septic) shock in the rat. Res Exp Med 187: 87–94

    Article  CAS  Google Scholar 

  24. Rutherford RB, Balis JV, Trow RS, Graves GM (1977) Comparison of hemodynamic and regional blood flow changes at equivalent stages of endotoxin and hemorrhagic shock. J Trauma 16: 886–897

    Article  Google Scholar 

  25. Van Lambalgen AA, Bronsveld W, Van den Bos GC, Thijs LG (1984) Distribution of cardiac output, oxygen consumption and lactate production in canine endotoxin shock. Cardiovasc Res 18: 195–205

    Article  PubMed  Google Scholar 

  26. Van Lambalgen AA, Bronsveld W, Van den Bos GC, Thijs LG (1985) Skeletal muscle perfusion and metabolism during canine endotoxin shock. Cardiovasc Res 19: 278–287

    Article  PubMed  Google Scholar 

  27. Bronsveld W, Van Lambalgen AA, Van den Bos GC, Thijs LG, Koopman PAR (1986) Regional blood flow and metabolism in canine endotoxin shock before, during and after infusion of glucose-insulin-potassium ( GIK ). Circ Shock 18: 31–42

    PubMed  CAS  Google Scholar 

  28. Lang CH, Bagby GJ, Ferguson JL, Spitzer JJ (1984) Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am J Physiol 246: R331 - R337

    PubMed  CAS  Google Scholar 

  29. Kreimeier U, Ruiz-Morales M, Schwarz M, Messmer K (1985) Organ perfusion during hyperdynamic endotoxinemia. Proc 9th Jahrestagung Gesellschaft für Mikrozirkulation: 118–120

    Google Scholar 

  30. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73: 637–644

    Article  PubMed  CAS  Google Scholar 

  31. Dhainaut J-F, Huyghebaerts M-F, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose and ketones in patients with septic shock. Circulation 75: 533–541

    Article  PubMed  CAS  Google Scholar 

  32. Dahn MS, Lange P, Lobdell K, Hans B, Jacobs LA, Mitchell RA (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101: 69–80

    PubMed  CAS  Google Scholar 

  33. Hartl WH, Günther B, Inthorn D, Heberer G (1988) Reactive hyperemia in patients with septic conditions. Surgery 103: 440–444

    PubMed  CAS  Google Scholar 

  34. Astiz ME, Rackow EC, Haydon P, Karras G, Weil MH (1989) Skeletal muscle blood flow and venous capacitance in patients with severe sepsis and systemic hypoperfusion. Chest 96: 363–366

    Article  PubMed  CAS  Google Scholar 

  35. Chernow B, Roth BL (1986) Pharmacologic manipulation of the peripheral vasculature in shock: clinical and experimental approaches. Circ Shock 18: 141–155

    PubMed  CAS  Google Scholar 

  36. Cain SM, Chapler CK (1980) O2 extraction by canine hindlimb during a-adrenergic blockade and hypoxic hypoxia. J Appl Physiol 146: 630–635

    Google Scholar 

  37. Cronenwett JL, Lindenauer SM (1979) Direct measurement of arteriovenous anastomic blood flow in the septic canine hindlimb. Surgery 85: 275–282

    PubMed  CAS  Google Scholar 

  38. Archie JPJ (1977) Anatomic arterial-venous shunting in endotoxic and septic shock in dogs. Ann Surg 186: 171–176

    Article  PubMed  Google Scholar 

  39. Wright CJ, Duff JH, McLean APH, MacLean LD (1971) Regional capillary blood flow and oxygen uptake in severe sepsis. Surg Gynec Obstet 132: 637–644

    PubMed  CAS  Google Scholar 

  40. Watkins GM, Rabelo A, Plzak LF, Sheldon GF (1974) The left shifted oxyhemoglobin curve in sepsis: a preventable defect. Arch Surg 180: 213–220

    CAS  Google Scholar 

  41. Kalter ES, Carlson RW, Thijs LG, Weil MH (1982) Effects of methylprednisolone on hemodyamics, arterovenous oxygen difference, P50 and 2,3-DPG in bacterial shock: a preliminary study. Crit Care Med 10: 662–666

    Article  PubMed  CAS  Google Scholar 

  42. Weisel RD, Vito L, Dennis RC, Valeri CR, Hechtmann HB (1977) Myocardial depression during sepsis. Am J Surg 133: 512–551

    Article  PubMed  CAS  Google Scholar 

  43. Mela-Riker L, Tavakoli H (1985) Effect of endotoxin on mitochondrial function. In: Berry LJ (ed) Handbook of endotoxin, vol 3. Elsevier Science Publishers BV, pp 166–184

    Google Scholar 

  44. Decker GAG, Blevings S, MacLean LD (1971) Effect of peritonitis on mitochondrial respiration. J Surg Res 11: 528–532

    Article  PubMed  CAS  Google Scholar 

  45. Fry DE, Silver BB, Rink RD, Van Arsdall LR, Flint LM Jr (1979) Hepatic cellular hypoxia in murine peritonitis. Surgery 85: 652–661

    PubMed  CAS  Google Scholar 

  46. Geller ER, Jankauskas S, Kirkpatrick J (1986) Mitochondria] death in sepsis: a failed concept. J Surg Res 40: 514–517

    Article  PubMed  CAS  Google Scholar 

  47. Asher EF, Garrison RN, Ratcliffe DJ, Fry DE (1983) Endotoxin, cellular function and nutrient blood flow. Arch Surg 118: 441–445

    Article  PubMed  CAS  Google Scholar 

  48. Townsend MC, Hampton WW, Haybron DM, Schermer WJ, Fry DE (1986) Effective organ blood flow and bioenergy status in murine peritonitis. Surgery 100: 205–213

    PubMed  CAS  Google Scholar 

  49. Garrison RN, Ratcliffe DJ, Fry DE (1982) Hepatocellular function and nutrient blood flow in experimental peritonitis. Surgery 92: 713–717

    PubMed  CAS  Google Scholar 

  50. Chaudry IH, Wichterman KA, Barre A (1979) Effect of sepsis on tissue adenine nucleotide levels. Surgery 85: 205–211

    PubMed  CAS  Google Scholar 

  51. Astiz M, Rackow EC, Weil MH, Schumer W (1988) Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 26: 311–320

    PubMed  CAS  Google Scholar 

  52. Vary T, Siegel JH, Nakatani T, Sato T, Auyama H (1986) Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 250: E634 - E640

    PubMed  CAS  Google Scholar 

  53. Cain SM (1984) Supply dependency of oxygen uptake in ARDS: myth or reality? Am J Med Sci 288: 119–124

    Article  PubMed  CAS  Google Scholar 

  54. Ellsworth ML, Goldfarb RD, Alexander RS, Bell DR, Powers SR Jr (1981) Microembolization induced oxygen utilization impairment in the canine gracilis muscle. Adv Shock Res 5: 89–99

    PubMed  CAS  Google Scholar 

  55. Shah DM, Newell JC, Saba TM (1981) Defects in peripheral oxygen utilization following trauma and shock. Arch Surg 116: 1277–1281

    Article  PubMed  CAS  Google Scholar 

  56. Landau SE, Alexander RS, Powers RS Jr, et al (1982) Tissue oxygen exchange and reactive hyperemia following microembolization. J Surg Res 32: 38–43

    Article  PubMed  CAS  Google Scholar 

  57. Shah DM, Dutton RE, Newell JC, Powers SR (1977) Vascular autoregulatory failure following trauma and shock. Surg Forum 28: 11–13

    PubMed  CAS  Google Scholar 

  58. Kreutzer F, Cain SM (1985) Regulation of the peripheral vasculature and tissue oxygenation in health and disease. Crit Care Clin 1: 453–470

    Google Scholar 

  59. Beer G, Yonce LR (1972) Blood flow, oxygen uptake and capillary filtration in resting skeletal muscle. Am J Physiol 223: 492–498

    PubMed  CAS  Google Scholar 

  60. Gaehtgens P, Benner KU, Schickendantz S (1976) Nutritive and non-nutritive blood flow in canine skeletal muscle after partial microembolization. Pflügers Arch 361: 183–189

    Article  PubMed  CAS  Google Scholar 

  61. Coalson JJ (1986) Pathology of sepsis, septic shock and multiplè organ failure. In: Sibbald WJ, Spring CL (eds) Perspectives on sepsis and septic shock. Soc Crit Care Med, pp 27–59

    Google Scholar 

  62. Hack CE, Nuijens JH, Strack van Schijndel RJM, Abbink JJ, Eerenberg AJM, Thijs LG (1990) A model for the interplay of inflammatory mediators in sepsis: a study in 48 patients. Intensive Care Med (in press)

    Google Scholar 

  63. Mantovani A, Dejana E (1989) Dytokines as communication signals between leukocytes and endothelial cells. Immunol Today 10: 370–375

    Article  PubMed  CAS  Google Scholar 

  64. Rogers F, Dunn R, Barrett J, Merlotti G, Sheaff C, Nolan P (1985) Alterations of capillary blood flow during sepsis. Circ Shock 15: 105–110

    PubMed  CAS  Google Scholar 

  65. Voerman HJ, Fonk T, Thijs LG (1989) Changes in hemorheology in patients with sepsis or septic shock. Circ Shock 29: 219–227

    PubMed  CAS  Google Scholar 

  66. Baker CH, Wilmoth FR, Truitt Sutton E (1986) Reduced RBC versus plasma microvascular flow due to endotoxin. Circ Shock 20: 127–139

    PubMed  CAS  Google Scholar 

  67. Saba TM (1989) Fibronectin: relevance to phagocytic host response to injury. Circ Shock 29: 257–278

    PubMed  CAS  Google Scholar 

  68. Fleck A, Raines G, Hawker F, Trotter J, Wallace PI, Ledingham IMcA, Coman KC (1985) Increased vascular permeability: a major cause of hypalbuminaemia in disease and injury. Lancet 1: 781–783

    Article  PubMed  CAS  Google Scholar 

  69. Ellman H (1984) Capillary permeability in septic patients. Crit Care Med 12: 629–633

    Article  PubMed  CAS  Google Scholar 

  70. Groeneveld ABJ, Teule GJJ, Bronsveld W, Van den Bos GC, Thijs LG (1987) Increased systemic microvascular albumin flux in septic shock. Intensive Care Med 13: 140–142

    Article  PubMed  CAS  Google Scholar 

  71. Groeneveld ABJ, Van Lambalgen AA, Thijs LG (1986) Microvascular permeability in endotoxin and bacterial shock. Acute Care 12: 195–218

    PubMed  CAS  Google Scholar 

  72. Groeneveld ABJ, Heidendal GAK, Den Hollander W, Nauta JJP, Thijs LG (1987) Noninvasive assessment of regional plasma extravasation in porcine septic shock. J Crit Care 2: 245–255

    Article  Google Scholar 

  73. Van Lambalgen AA, Van den Bos GC, Thijs LG (1987) Changes in regional plasma extravasation in rats following endotoxin infusion. Microvasc Res 34: 116–132

    Article  PubMed  Google Scholar 

  74. Van Lambalgen AA, Van den Bos GC, Thijs LG (1989) Blood flow and plasma extravasation in skeletal muscle during endotoxemia. Int J Microcirc Clin Exp 8: 217–232

    PubMed  Google Scholar 

  75. Groeneveld ABJ, Nauta JJP, Thijs LG (1988) Peripheral vascular resistance in septic shock: its relation to outcome. Intensive Care Med 14: 141–147

    Article  PubMed  CAS  Google Scholar 

  76. Parrillo JE (1985) Cardiovascular dysfunction in septic shock: new insights into a deadly disease. Internat J Cardiol 7: 314–321

    Article  CAS  Google Scholar 

  77. Thijs LG, Hack CE, Nuijens JH, Groeneveld ABJ (1989) Peripheral circulation in septic shock. In: Schlag G, Redl H (eds) Second Vienna shock forum. Liss, New York, pp 163–174

    Google Scholar 

  78. Ognibene FP, Parker MM, Burch-Whitman C, et al (1988) Neutrophil aggregating activity and septic shock in humans: neutrophil aggregation by a C5a-like material occurs more frequently than complement component depletion and correlates with depression of systemic vascular resistance. J Crit Care 3: 103–111

    Article  Google Scholar 

  79. Nespoli A, Chiara O, Clement MG, Dajnino G, Bevilacqua G, Aguggini G (1983) The cardiorespiratory impairment in cirrhosis and sepsis. An experimental interpretation using octapamine infusion. Circ Shock 10: 15–30

    PubMed  CAS  Google Scholar 

  80. Siegel JH, Giovannini I, Cerra FB, Nespoli A (1983) Pathophysiologic synergy in cardiovascular and respiratory compensation with cirrhosis and seosis. A manifestation of a common metabolic defect? Arch Surg 117: 225–238

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thijs, L.G., Groeneveld, A.B.J. (1991). Tissue Oxygen Utilization in Septic Shock. In: Gutierrez, G., Vincent, J.L. (eds) Tissue Oxygen Utilization. Update in Intensive Care and Emergency Medicine, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84169-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84169-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52472-4

  • Online ISBN: 978-3-642-84169-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics