Skip to main content

Intracellular Oxygen Supply: Implications for Intensive Care

  • Chapter
Tissue Oxygen Utilization

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 12))

  • 165 Accesses

Abstract

The interruption of O2 supply accompanying traumatic injuries, infarctions, cerebrovascular accidents and other common emergencies is of extreme importance because O2 deficiency is a major cause of human morbidity and mortality. Oxygen deficiency is an extensively studied subject, yet the molecular mechanisms of irreversible injury remain incompletely defined.

Supported by NIH Grants GM-36538, HL-30286, and GM-28176.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gurdjian ES, Stone WE, Webster JE (1944) Cerebral metabolism in hypoxia. Arch Neurol Psychiat 51: 472–477

    CAS  Google Scholar 

  2. Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. JBC 239: 18–30

    CAS  Google Scholar 

  3. Chance B (1957) Cellular oxygen requirements. Federation Proceedings 16: 671–680

    PubMed  CAS  Google Scholar 

  4. Jones DP, Kennedy FG, Andersson BS, Aw TY, Wilson E (1985) When is a mammalian cell hypoxic? Insights from studies of cells vs. mitochondria. Mol Physiol 8: 473–482

    CAS  Google Scholar 

  5. Keevil T, Mason HS (1978) Molecular oxygen in biological oxidations — an overview. Meth Enzymol 52: 3–40

    Article  PubMed  CAS  Google Scholar 

  6. Aw TY, Jones DP, O’Shannessy DJ, Priest JH, Priest RE (1985) Oxygen dependence of estrogen production by human placental microsomes and cultured choriocarcinoma cells. J Steroid Biochem 22: 753–758

    Article  PubMed  CAS  Google Scholar 

  7. Jones DP (1986) Renal metabolism during normoxia, hypoxia and ischemic injury. Ann Rev Physiol 48: 33–50

    Article  CAS  Google Scholar 

  8. Jones DP, Mason HS (1978) Metabolic hypoxia: accumulation of tyrosine metabolites in hepatocytes at low PO2. Biochem Biophys Res Commun 80: 477–483

    Article  PubMed  CAS  Google Scholar 

  9. Warburg O (1926) Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem Z 177: 471–486

    CAS  Google Scholar 

  10. Oshino N, Sugano T, Oshino R, Chance B (1974) Mitochondrial function under hypoxic conditions: the steady states of cytochrome a + a3 and their relation to mitochondrial energy states. Biochim Biophys Acta 368: 298–310

    Article  PubMed  CAS  Google Scholar 

  11. Sugano T, Oshino N, Chance B (1974) Mitochondria] function under hypoxic conditions: the steady states of cytochrome c reduction and of energy metabolism. Biochim Biophys Acta 374: 340–358

    Google Scholar 

  12. Hillis LD, Braunwald E (1977) Myocardial ischemia. N Engl J Med 296: 971–978

    Article  PubMed  CAS  Google Scholar 

  13. Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250: C663 - C675

    PubMed  CAS  Google Scholar 

  14. Jones DP, Mason HS (1978) Gradients of O2 concentration in hepatocytes. J Biol Chem 253: 4874–4880

    PubMed  CAS  Google Scholar 

  15. Wilson DF, Erecinska M, Drown C, Silver IA (1979) The oxygen dependence of cellular metabolism. Arch Biochem Biophys 195: 485–493

    Article  PubMed  CAS  Google Scholar 

  16. Losse B, Schuchhardt S, Niederle N, Benzing H (1973) The histogram of local oxygen pressure (PO2) in the dog myocardium and the PO, behavior during transitory changes of oxygen administration. In: Bruley DF, Bicher HI (eds) Oxygen transport to tissue, part A. Plenum Press, New York, pp 535–540

    Google Scholar 

  17. Vaupel P, Braunbeck W, Thews G (1973) Respiratory gas exchange and P02-distribution in splenic tissue. In: Bruley DF, Bicher HI (eds) Oxygen transport to tissue, part A. Plenum Press, New York, pp 401–406

    Google Scholar 

  18. Kessler M, Lang H, Sinagowitz E, Rink R, Hoper J (1973) Homeostasis of oxygen supply in liver and kidney. In: Bruley DF, Bicher HI (eds) Oxygen transport to tissue, part A. Plenum Press, New York, pp 351–360

    Google Scholar 

  19. Balaban RS, Sylvia AL (1981) Spectrophotometric monitoring of O2 delivery to the exposed rat kidney. Am J Physiol 241: F257 - F262

    PubMed  CAS  Google Scholar 

  20. Rosenthal M, LaManna JC, Jobsis FF, Lavasseur JE, Kontos HA, Patterson JL (1976) Effects of respiratory gases on cytochrome a in intact cerebral cortex: is there a critical PO2? Brain Res 108: 143–153

    Article  PubMed  CAS  Google Scholar 

  21. Jones DP (1984) Effect of mitochondrial clustering on O2 supply in hepatocytes. Am J Physiol 247: C83 - C89

    PubMed  CAS  Google Scholar 

  22. Boag JW (1969) Oxygen diffusion and oxygen depletion problems in radiobiology. Curr Top Radiat Res 5: 141–195

    CAS  Google Scholar 

  23. Boag JW (1970) Cellular respiration as a function of oxygen tension. Int J Radiat Biol 18: 475–477

    Article  CAS  Google Scholar 

  24. Clark A, Clark PAA, Connett RJ, Gayeski TEJ, Honig CR (1987) How large is the drop in PO2 between cytosol and mitochondrion? Am J Physiol 252: C583–0587

    PubMed  Google Scholar 

  25. Caille JP, Hinke JAM (1974) The volume available to diffusion in the muscle fiber. Can J Physiol Pharmacol 52: 814–828

    Article  PubMed  CAS  Google Scholar 

  26. Homer L, Shelton JB, Dorsey CH, Williams TJ (1984) Anisotropic diffusion of oxygen in slices of rat muscle. Am J Physiol 246 (Regulatory Integrative Comp Physiol 15: R107 - R113

    Google Scholar 

  27. Mastro AM, Babich MS, Taylor WD, Keith AD (1984) Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci USA 81: 3414–3418

    Article  PubMed  CAS  Google Scholar 

  28. Kennedy FG, Jones DP (1986) Oxygen dependence of mitochondrial function in isolated rat cardiac myocytes. Am J Physiol 250: C374 - C383

    PubMed  CAS  Google Scholar 

  29. Aw TY, Wilson E, Hagen TM, Jones DP (1987) Determinants of mitochondrial O2 dependence in kidney. Am J Physiol 253: F440 - F447

    PubMed  CAS  Google Scholar 

  30. Jones DP, Kennedy FG, Aw TY (1988) Intracellular O2 gradients and the distribution of mitochondria. In: Houston C, Sutton J (eds) Hypoxia: The tolerable limits. Benchmark Press, Indiana, pp 59–75

    Google Scholar 

  31. D’Agostino AN, Ziter FA, Rallison ML, Bray PF (1968) Familial myopathy with abnormal muscle mitochondria. Arch Neurol 18: 388–401

    Article  PubMed  Google Scholar 

  32. Nishizawa M, Tanaka K, Shinozawa K, et al (1987) A mitochondrial encephalomyopathy with cardiomyopathy. A case revealing a defect in complex I in the respiratory chain. J Neurolog Sci 78: 189–201

    Article  CAS  Google Scholar 

  33. Tandler B, Erlandson RA, Wynder EL (1968) Riboflavin and mouse hepatic cell structure and function. I. Ultrastructural alterations in simple deficiency. Am J Pathol 52: 69–95

    PubMed  CAS  Google Scholar 

  34. Aw TY, Jones DP (1987) Microzonation of ATP and pH in the aqueous cytoplasm of mammalian cells. In: Jones DP (ed) Microcompartmentation. CRC Press, Florida, pp 191–207

    Google Scholar 

  35. Costa LE, Boveris A, Koch OR, Taquini AC (1988) Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia. Am J Physiol 255: C123 - C129

    PubMed  CAS  Google Scholar 

  36. Aw TY, Jones DP (1987) Respiratory characteristics of neonatal rat hepatocytes. Pediat Res 21: 492–496

    Article  PubMed  CAS  Google Scholar 

  37. Jones DP, Aw TY, Lincoln BC, Bonkovsky HL (1987) Oxygen concentration requirement for mitochondrial function in rat hepatocytes decreases dramatically during two days in primary culture. The Physiologist 30: 123

    Google Scholar 

  38. Hochachka PW, Dunn JF (1983) Metabolic arrest: the most effective means of protecting tissues against hypoxia. Prog Clin Biol Res 136: 297–309

    PubMed  CAS  Google Scholar 

  39. Andersson BS, Aw TY, Jones DP (1987) Mitochondrial transmembrane potential and pH gradient during anoxia. Am J Physiol 252: C349 - C355

    PubMed  CAS  Google Scholar 

  40. Andersson BS, Jones DP (1985) Use of digitonin fractionation to determine mitochondrial transmembrane ion distribution during anoxia. Analyt Biochem 146: 164–172

    Article  PubMed  CAS  Google Scholar 

  41. Aw TY, Andersson BS, Jones DP (1987) Mitochondrial transmembrane ion distribution during anoxia. Am J Physiol 252: C356 - C361

    PubMed  CAS  Google Scholar 

  42. Aw TY, Andersson BS, Jones DP (1987) Suppression of mitochondrial respiratory function following short-term anoxia. Am J Physiol 252: C362 - C368

    PubMed  CAS  Google Scholar 

  43. Yamada EW, Shiffman FH, Huzel NJ (1980) Ca2+ -regulated release of an ATPase inhibitor protein from submitochondrial particles derived from skeletal muscles of the rat. J Biol Chem 255: 267–273

    PubMed  CAS  Google Scholar 

  44. Aw TY, Shan X, Andersson BS, Jones DP (1987) Mitochondrial membrane potential and pH gradient in hypoxic hepatocytes: Characteristics of the neahypoxic state. In: Lemasters JJ, Hackenbrock CR, Thurman RG, Westerhoff HV (eds) Integration of mitochondrial function. Plenum Press, New York, pp 367–377

    Google Scholar 

  45. Aw TY, Jones DP (1989) Cyanide toxicity in hepatocytes under aerobic and anaerobic conditions. Am J Physiol 257: C435 - C441

    PubMed  CAS  Google Scholar 

  46. Kadenbach B (1986) Regulation of respiration and ATP synthesis in higher organisms. Hypothesis J Bioenerg Biomemb 18: 39–54

    Article  CAS  Google Scholar 

  47. Jones DP (1985) The role of oxygen concentration in oxidative stress: hypoxic and hyperoxic models. In: Sies H (ed) Oxidative stress. Academic Press, New York, pp 151–195

    Google Scholar 

  48. Granger DN, Rutili G, McCord J (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29

    PubMed  CAS  Google Scholar 

  49. McCord JM (1985) Oxygen-derived free radicals in post-ischemic tissue injury. N Engl J Med 312: 159–163

    Article  PubMed  CAS  Google Scholar 

  50. Parks DA, Bulkley GB, Granger DN (1983) Role of oxygen free radicals in shock, ischemia and organ presentation. Surgery 94: 428–432

    PubMed  CAS  Google Scholar 

  51. Hansson R, Johansson S, Jonsson O, Pettersson S, Schersten T, Waldenstrom J (1986) Kidney protection by pretreatment with free radical scavengers and allopurinol: renal function at recirculation after warm ischemia in rabbits. Clin Sci Lond 71: 245–251

    PubMed  CAS  Google Scholar 

  52. Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74: 1156–1164

    Article  PubMed  CAS  Google Scholar 

  53. Gallagher KP, Buda AJ, Pace D, Gerren RA, Shlafer M (1986) Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion. Circulation 73: 1065–1076

    Article  PubMed  CAS  Google Scholar 

  54. Linas SL, Shanley PF, Wittenburg D, Berger E, Repine JE (1988) Neutrophils accentuate ischemia-reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255: F728 - F735

    PubMed  CAS  Google Scholar 

  55. Tribble DL, Jones DP, Edmondson DE (1988) Effect of hypoxia on tert-butylhydroperoxide-induced oxidative injury in isolated hepatocytes. Mol Pharmacol 34: 413–420

    PubMed  CAS  Google Scholar 

  56. Shan X, Aw TY, Shapira R, Jones DP (1989) O2 dependence of glutathione synthesis in isolated hepatocytes. Toxicol Appl Pharmacol 101: 261–270

    Google Scholar 

  57. Tribble DL, Jones DP (1990) Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. Biochem Pharmacol 39: 729–737

    Article  PubMed  CAS  Google Scholar 

  58. Kowalski DP, Aw TY, Jones DP (1990) Lactate protects against oxidative injury in post-anoxic hepatocytes. FASEB J 4, A898

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, D.P., Aw, T.Y., Kowalski, D.P. (1991). Intracellular Oxygen Supply: Implications for Intensive Care. In: Gutierrez, G., Vincent, J.L. (eds) Tissue Oxygen Utilization. Update in Intensive Care and Emergency Medicine, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84169-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84169-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52472-4

  • Online ISBN: 978-3-642-84169-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics