Advertisement

Brachytherapy Techniques

  • Reinhold G. Müller
Part of the Medical Radiology book series (MEDRAD)

Abstract

“Radiotherapy is an evolving speciality, and therefore the practice of any particular time is liable to go out of date with surprising rapidity.”

Ralston Paterson’s statement from 1948 (Paterson 1963) is as true as the fact that brachytherapy, a technique stemming from the very beginning of radiotherapy, is still a modern and developing method.

Keywords

Dose Rate Dose Distribution Line Source Interstitial Brachytherapy Interstitial Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschuler MD, Findley PA (1982) Rapid accurate three-dimensional location of multiple seeds in implant radiotherapy. Med Phys 9: 612Google Scholar
  2. Amols HI, Rosen II (1981) A three-film technique for reconstruction of radioactive seed implants. Med Phys 8: 210–214PubMedCrossRefGoogle Scholar
  3. Anderson LL (1973) Status and dosimetry for Cf-252 medical neutron sources. Phys Med Biol 18: 779–799PubMedCrossRefGoogle Scholar
  4. Anderson LL (1975) Dosimetry for interstitial radiation therapy. In: Hilaris BS (ed) Handbook of interstitial brachytherapy. Memorial Sloan Kettering Cancer Center, Publishing Science Group, Acton, pp 87–115Google Scholar
  5. Anderson LL (1976) Spacing nomograph for interstitial implants of 125–1 seeds. Med Phys 3: 48–51PubMedCrossRefGoogle Scholar
  6. Anderson LL (1983a) Remote afterloading in cancer management, part I. Afterloading design and optimization potential. In: Hilaris BS, Batata MA (eds) Brachytherapy oncology. Memorial Sloan Kettering Cancer Center, New York, pp 93–100Google Scholar
  7. Anderson LL (1983b) Experiences with Ir-192. In: Wright AE, Boyer AL (eds) Advances in radiation therapy treatment planning. American Institute of Physics, New YorkGoogle Scholar
  8. Anderson LL (1985) Physical optimization of afterloading techniques. Strahlentherapie 161: 264–269PubMedGoogle Scholar
  9. Anderson LL (1986) A “natural” volume-dose histrogram for brachytherapy. Med Phys 13: 898–903PubMedCrossRefGoogle Scholar
  10. Anderson LL, Aubrey A (1983) Computerized dosimetry for I-125 prostate implants. In: Hilaris BS, Batata MA (eds) Brachytherapy oncology 1983. Memorial Sloan Kettering Cancer Center, New York, pp 57–63Google Scholar
  11. Anderson LL, Wagner LK, Schauer TH (1981a) Memorial Hospital methods of dose calculation for 192-Ir. In: George FW (ed) Modern interstitial and intracavitary radiation cancer management. Masson, New York, pp 1–7Google Scholar
  12. Anderson LL, Kuan HM, Ding IY (1981b) Clinical dosimetry with I-125. In: George FW (ed) Modern interstitial and intracavitary radiation cancer management, Masson, New York, pp 8–15Google Scholar
  13. Andrew W, Zwicker RD, Sernick ES (1985) Tumor dose specification of I-125 seed implants. Med Phys 12: 27–31CrossRefGoogle Scholar
  14. Arai T (1978) Relationship between total isoeffect dose and number of fractions for the treatment of uterine cervical carcinoma by high dose rate intracavitary irradiation. Working party on the use of radionuclides and afterloading techniques in the treatment of cancer of the uterus. High Dose Workshop, LondonGoogle Scholar
  15. Aristizabal SA, Valencia A, Ocampo G, Surwit E (1985) Interstitial parametrial irradiation in cancer of the cervix stage IIB—IIIB. Endocurie Hyperthermia Oncol 1: 41–48Google Scholar
  16. Burns GS, Raeside DE (1987) Monte Carlo simulation of the dose distribution around 125-I seeds. Med Phys 14: 420–424PubMedCrossRefGoogle Scholar
  17. Burns GS, Raeside DE (1988) Two-dimensional dose distribution around a commercial 125–1 seed. Med Phys 15: 56–60PubMedCrossRefGoogle Scholar
  18. Batho HF, Young MEJ (1964) Tissue absorption corrections for linear radium sources. Br J Radiol 37: 689–692PubMedCrossRefGoogle Scholar
  19. Batho HF, Young MEJ (1967) A revised table of tissue correction factors for linear radium sources. Br J Radiol 40: 785PubMedCrossRefGoogle Scholar
  20. Berchmans J, Scarbrough EC, Nguyen PD, Antich PP (1988) A diverging gynecological template for radioactive interstitial/intracavitary implants of the cervix. Int J Radiat Oncol Biol Phys 11: 461–465Google Scholar
  21. Biggs PJ, Kelly DM (1983) Geometric reconstruction of seed implants using a three-film technique. Med Phys 10: 701–704PubMedCrossRefGoogle Scholar
  22. Bloch P, Krishnaswamy V, Hale J (1972) Dose tables for californium-252 implants. Am J Roentgenol 115: 822–833Google Scholar
  23. Boisserie G, Marinello G (1979) Calcul automatique de la dose de base dans le Système de Paris, J Radiol 60: 327–332PubMedGoogle Scholar
  24. Breitman K (1974) Dose rate tables for clinical Cs-137 sources cheated in platinum. Br J Radiol 47: 657–664PubMedCrossRefGoogle Scholar
  25. Bulski W, Dade M (1986) Treatment planning software for afterloading brachytherapy. Radiother Oncol 5: 59–64PubMedCrossRefGoogle Scholar
  26. Busch M (1966) Ein Dosierungsschema für die interstitielle Gammatherapie. Strahlentherapie [Sonderb] 64: 213–218Google Scholar
  27. Busch M (1977) Dosierung bei interstitieller Therapie mit umschlossenen Gammastrahlern. Strahlentherapie 153: 589–593PubMedGoogle Scholar
  28. Casebow MP (1971) The calculation and measurement of exposure distribution from Co-60 ophthalmic applicators. Br J Radiol 44: 618–624PubMedCrossRefGoogle Scholar
  29. Cassell KJ (1983) A fundamental approach to the design of a dose-rate calculation program for use in brachytherapy planning. Br J Radiol 56: 113–119PubMedCrossRefGoogle Scholar
  30. Castro JR, Oliver GD, Withers HR, Almond PR (1973) Experience with Californium-252 in clinical radiotherapy. Am J Roentgenol 117: 182–194Google Scholar
  31. Chan B, Rotman M, Randall GJ (1972) Computerized dosimetry of Co-60 ophthalmic applicators. Radiology 103: 705–707PubMedGoogle Scholar
  32. Chassagne D, Delouche G, Rocoplan JA, Pierquin B, Gest J (1969) Description et premieres essais du Curietron. J Radiol Electrol 50: 910–913PubMedGoogle Scholar
  33. Chassagne D, Horiot JC (1977) Positions pour une définition commune des points de référence en curiethérapie gynécolographique. J Radiol Electrol 58: 371–375PubMedGoogle Scholar
  34. Coffrey C, Sayeg J, Beach L, Song S, Landis C, Connor A (1981) Calibration of surface dose rate for a Sr-90 beta applicator: comparison of external, theoretical, and biological methods. Med Phys 8: 558Google Scholar
  35. Dale RG (1982) A Monte Carlo derivation of parameters for use in the tissue dosimetry of medium and low energy nuclides. Br J Radiol 55: 748–757PubMedCrossRefGoogle Scholar
  36. Dale RG (1983) Some theoretical derivations relating to the tissue dosimetry of brachytherapy nuclides, with particular reference to iodine 125. Med Phys 10: 176–183PubMedCrossRefGoogle Scholar
  37. Dale RG (1985) The application of the linear-quadratic dose-effect equating to fractionated and protracted radiotherapy. Br J Radiol 58: 515–528PubMedCrossRefGoogle Scholar
  38. Dale RG (1986) Revisions to radial dose function data for 125-I and 131-Cs. Med Phys 13: 963–964PubMedCrossRefGoogle Scholar
  39. Del Regato JA (1978) Brachytherapy. In: Vaeth JM (ed) Renaissance of interstitial brachytherapy. Karger, Basel, pp 5–12Google Scholar
  40. Delclos L (1978) Are interstitial radium applications passe? Front Radiat Ther Oncol 12: 42–56Google Scholar
  41. Douglas BG, Fowler JF (1976) The effect of multiple small doses of X-rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66: 401–426PubMedCrossRefGoogle Scholar
  42. Duane W (1915) On the extraction and purification of radium emanation. Phys Rev 5: 311–314CrossRefGoogle Scholar
  43. Dutreix A, Marinello G (1987) Source localization and dose calculation methods. In: Pierquin B, Wilson JF, Chassagne D (eds) Modern brachytherapy. Masson, New York, pp 17–24Google Scholar
  44. Dutreix A, Wambersie A (1968) Étade de la reparation des doses autour de sources poncuelles alignées application en curietherapie gynécologiques. Acta Radiol 7: 389–400CrossRefGoogle Scholar
  45. Dutreix A, Marinello G, Wamberie A (1982) Dosimétrie en curiethérapie. Masson, ParisGoogle Scholar
  46. Edmundson CK (1987) Requirements for and quality assurance of computer treatment planning systems for brachytherapy. In: Kereiakes JG, Elson HR, Bom CG (eds) Radiation oncology physics 1986. American Institute of Physics, New York, pp 700–713 (Medical physics monograph no 15 )Google Scholar
  47. Ellis F (1971) Nominal standard dose and the ret. Br J Radiol 44: 101–108PubMedCrossRefGoogle Scholar
  48. Ellis F, Sorensen A (1974) A method of estimating biological effect of combined intracavitary low dose rate radiation with external radiation in carcinoma of the cervix uteri. Radiology 110: 681–686PubMedGoogle Scholar
  49. Evans RD (1968) X-ray and y-ray interactions. In: Attix FH, Roesch WC (eds) Radiation dosimetry, 2nd edn, vol I. Academic Paris, pp 94–155Google Scholar
  50. Failla G (1926) The development of filtered radon implants. Am J Roentgenol 16: 507–526Google Scholar
  51. Findlay PA, Wright DC, Rosenow U, Harrington FS, Miller RW (1985) 125-I interstitial brachytherapy for primary malignant brain tumors: technical aspects of treatment planning and implantation methods. Int J Radiat Oncol Biol Phys 11: 2021–2026Google Scholar
  52. Fitzgerald LT, Mauderli W (1975) Analysis of errors in three-dimensional reconstruction of radium implants from stereo radiographs. Radiology 115: 455–458PubMedGoogle Scholar
  53. Fletcher GH (1953) Cervical radium applicators with screening in the direction of bladder and rectum. Radiology 60: 77–83PubMedGoogle Scholar
  54. Fletcher GH (ed) (1980) Textbook of radiotherapy, 3rd edn. Lea and Febiger, PhiladelphiaGoogle Scholar
  55. Fletcher GH, Shalek KJ, Cole A (1953) Cervical radium applicators with screening in the direction of bladder and rectum. Physical Study. Radiology 60: 77–84Google Scholar
  56. Gebhardt E, Müller RG (1988) Relative Dosismessungen im Nahfeld von Jod-125- und Ir-192-Seeds. In: Nüsslin F (ed) Medizinische Physik 1988. Deutsche Gesellschaft für Medizinische Physik, pp 446–500Google Scholar
  57. Gebhardt E, Müller RG (1989) Dosisverteilung in der Umgebung radioaktiver Strahler der interstitiellen und intrakavitären Therapie. In: Leetz, HK (ed) Medizinische Physik 1989, Deutsche Gesellschaft für Medizinische Physik, pp 377–381Google Scholar
  58. George FW (ed) (1981) Modern interstitial and intracavitary radiation management. Masson, New YorkGoogle Scholar
  59. Gillin MT, Kline RW, Wilson JF (1984) Single and double plane implants: a comparison of the Manchester system with the Paris system. Int J Radiat Oncol Biol Phys, 10: 921–925PubMedCrossRefGoogle Scholar
  60. Glasgow GP, Perez CA (1987) Physics in Brachytherapy. In: Perez CA, Brady LU (eds) Principles and practice of radiation oncology. Lippincott, PhiladelphiaGoogle Scholar
  61. Godden TJ (1988) Physical aspects of brachytherapy. Hilger, Bristol (Medical physics handbooks, vol 19 )Google Scholar
  62. Goffinet DR, Martinez A, Pooler D, Palos B (1978) Perineal brachytherapy. Renaissance of interstitial brachytherapy. Front Radiat Ther Oncol 12: 119–135Google Scholar
  63. Goldenberg DM (ed) (1990) Second conference on radioimmunodetection and radioimmunotherapy of cancer, Princeton 1988. Cancer Res 50 [Suppl 3]: 1Google Scholar
  64. Gutin PH, Phillips TL, Hosobuchi Y et al. (1981) Permanent and removable implants for the brachytherapy of brain tumors. Int J Radiat Oncol Biol Phys 7: 1371–1381PubMedCrossRefGoogle Scholar
  65. Gutin PH, Phillips TL, Wara WM, Leibel SA, Hosobuchi Y, Levin VA, Weaver KA, Lamb S (1984) Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg 60: 61–68PubMedCrossRefGoogle Scholar
  66. Hahn PF (ed) (1956) Therapeutic use of artificial radioisotopes. Wiley, New YorkGoogle Scholar
  67. Hale J (1958) The use of interstitial radium dose rate tables for other radioactive isotopes. Am J Roentgenol 79: 49–53Google Scholar
  68. Hall EJ, Oliver R, Shepstone BJ (1966) Routine dosimetry with tantalum-182 and iridium-192 wires. Acta Radiol 4: 155–160CrossRefGoogle Scholar
  69. Hammersmith Oncology Group and Imperial Cancer Research Fund (1984) Antibody-guided irradiation of malignant lesions: three cases illustrating a new method of treatment. Lancet: 1441Google Scholar
  70. Hartmann GH, Schlegel W, Scharfenberg H (1983) The three-dimensional dose distribution of 125-I seeds in tissue. Phys Med Biol 28: 693–699PubMedCrossRefGoogle Scholar
  71. Henschke UK (1956) Interstitial implantation with radioisotopes. In: Hahn PF (ed) Therapeutic use of artificial radioisotopes. Wiley, New York, pp 375–397Google Scholar
  72. Henschke UK (1960) “Afterloading” applicator for radiation therapy of the carcinoma of the uterus. Radiology 74: 834Google Scholar
  73. Henschke UK, Cevec P (1968) Dimension averaging a simple method of dosimetry of interstitial implants. Radiobiol Radiother 9: 287–298Google Scholar
  74. Henschke UK, James AG, Myers WG (1953) Radiogold seeds for cancer therapy. Nucleonics 11: 46–48Google Scholar
  75. Henschke UK, Hilaris B, Mahan GD (1963) After-loading in interstitial and intracavitary radiation therapy. Am J Roentgenol Radium Ther Nucl Med 90: 386–395PubMedGoogle Scholar
  76. Henschke UK, Hilaris BS, Mahan GD (1966) Intracavitary radiation therapy in cancer of the uterine cervix by remote afterloading with cycling sources. Am J Roentgenol 96: 45–51Google Scholar
  77. Heyman J (1929) The technique in the treatment of cancer uteri at Radiumhemmet. Acta Radiol X: 49–64Google Scholar
  78. Heyman J (1935) The so-called Stockholm method and the results of treatment of uterine cancer at Radiumhemmet. Acta Radiol XVI: 129–148Google Scholar
  79. Heyman J, Reuterwall O, Benner S (1941) The Radium-hemmet experience with radiotherapy in cancer of the corpus of the uterus: classification method of treatment and results. Acta Radiol 22: 11–98Google Scholar
  80. Hilaris BS (ed) (1975) Handbook of Interstitial Brachytherapy. Publishing Sciences Group, ActonGoogle Scholar
  81. Hilaris BS, Henschke UK, Holt JG (1968) Clinical experience with long half-life and low energy encapsulated radioactive sources in cancer radiation therapy. Radiology 91: 1163–1167PubMedGoogle Scholar
  82. Hill BT, Bellamy AS (eds) (1990) Antitumor drug-radiation interactions. CRC Press, Boca RatonGoogle Scholar
  83. Hine GJ, Friedman M (1950) Isodose measurements of linear radium sources in air and water by means of an automatic isodose recorder. Am J Roentgenol 64: 989–998Google Scholar
  84. Hughes HA (1956) Accuracy of foreign body localization from “Tube-Shift” radiographs. Br J Radiol 29: 116–119PubMedCrossRefGoogle Scholar
  85. ICRU, Report 38 (1984) Dose and volume specification for reporting intracavitary therapy. International Commission on Radiological Units and Measurements, BethesdaGoogle Scholar
  86. Inoue T, Hori S, Miyata Y, Shigematsu Y, Fuchihata H, Tanaka Y (1978) Dose and dose rate in Ir-192 interstitial irradiation for carcinoma of the tongue. Acta Radiol [Oncol] 17: 27–32CrossRefGoogle Scholar
  87. Int J Radiat Oncol Biol Phys Chemical modifiers of cancer treatment. Proceedings (1982) 8: 323–815 (1984) 10: 1161–1814 (1986) 12: 1019–1545Google Scholar
  88. Joleson I, Bäckström A (1969) Dose rate measurement in bladder and rectum. Acta Radiol 8: 343–359CrossRefGoogle Scholar
  89. Jones CH, Dermentzoglou F (1971) Practical aspects of Sr-90 ophthalmic applicator dosimetry. Br J Radiol 44: 203–210PubMedCrossRefGoogle Scholar
  90. Kellerer AM (1984) Verallgemeinerung des NSD-Konzepts auf Multifraktionierung sowie intracavitäre und interstitielle Therapie. In: Schmidt T (ed) Medizinische Physik pp 97–108Google Scholar
  91. Kim JH, Hilaris B (1975) Iodine 125 sources in interstitial tumor therapy — clinical and biologic considerations. Am J Roentgenol 123: 163–169Google Scholar
  92. Kirk J, Gray WM, Watson ER (1972) Commulative radiation effect. II. Continuous radiation therapy — Long-lifed sources. Clin Radiol 23: 93–105Google Scholar
  93. Krishnaswamy V (1972a) Dose distributions about ‘37Cs sources in tissues. Radiology 105: 181–184PubMedGoogle Scholar
  94. Krishnaswamy V (1972b) Calculated debth does tables for californium-252 sources in tissue. Phys Med Biol 17: 56–63PubMedCrossRefGoogle Scholar
  95. Krishnaswamy V (1978) Dose distribution around an I-125 seed source in tissue. Radiology 126: 489–491PubMedGoogle Scholar
  96. Kumar PP, Good RR, Hussian MB, Bartone FF (1986) Simple, accurate, safe and cost-effective percutaneous transperineal template technique for permanent 125-Iodine interstitial brachytherapy of prostate cancer. Strahlenther Onkol 162: 713–719PubMedGoogle Scholar
  97. Langmuir VK, Sutherland RM (1988) Dosimetry models for radioimmunotherapy. Med Phys 15: 867–873PubMedCrossRefGoogle Scholar
  98. Lee F, Torp-Pedersen S, Meiselman L, Siders DB, Littrup P, Dorr RP, Pauly F (1988) Transrectal ultrasound in the diagnosis and staging of local disease after I-125 seed implantation for prostate cancer. Int J Radiat Oncol Biol Phys 15: 1453–1459PubMedCrossRefGoogle Scholar
  99. Leetz HK, Vogelsang U (1989) Unsicherheiten bei der Strahlenquellenlokalisation in der Brachytherapie. Strahlenther Onkol 165: 807–812PubMedGoogle Scholar
  100. Leibel SA (1985) Interstitial implantation for the treatment of malignant brain tumors. Astro refresher course no. 402’Google Scholar
  101. Leichner PK, Klein JL, Garrison JB et al. (1981) A model for radioimmunoglobulin dosimetry. Int Radiat Oncol Biol Phys 7: 323–333CrossRefGoogle Scholar
  102. Leichner PK, Klein JL, Fishman EK et al. (1984) Comparative tumor dose from I-131 labeled polyclonal antiferritin, anti-AFP, and anti-CEA inprimary liver cancer. Cancer Drug Deliv 1: 321–328PubMedCrossRefGoogle Scholar
  103. Leichner PK, Yang NC, Wessels BW, Hawkins WG, Order SE, Klein JL (1990) Dosimetry and treatment planning in radioimmunotherapy. Front Radiat Ther Oncol 24: 109–120PubMedGoogle Scholar
  104. Ling CC, Anderson LL, Shipley WU (1979) Dose inhomogeneity in interstitial implants using 125-I seeds. Int J Radiat Oncol Biol Phys 5: 419–425PubMedCrossRefGoogle Scholar
  105. Ling CC, Yorke ED, Spiro IJ, Kubiatowicz D, Bennett D (1983) Physical dosimetry of 1–125 seeds of a new design for interstitial implant. Int J Radiat Oncol Biol Phys 9: 17–47CrossRefGoogle Scholar
  106. Liversage WE (1969) A general formula for equating protracted and acute regimes of radiation. Br J Radiol 42: 432–440PubMedCrossRefGoogle Scholar
  107. Loevinger R, Japha EM, Browell GL (1956) Discrete radioisotope sources. In: Hine GJ, Brownell (eds) Radiation Dosimetry. Academic, New YorkGoogle Scholar
  108. Lommatzsch P (1977) Die theapeutische Anwendung von ionisierenden Strahlen in der Augenheilkunde. Thieme, LeipzigGoogle Scholar
  109. Lommatzsch PK (1983) Beta irradiation with Ru 106/Rh 106. Applicators of choroidal melanomas: sixteen years experience. In: Lommatzsch PK, Blodi LFC (eds) Intraocular Tumours. Springer-Verlag Berlin pp 355–363Google Scholar
  110. Magnus L, Gobbeler T, Strotges W (1968) Tiefendosisberechnung für die Co-60-Augenapplikatoren CKA 5–11 (nach Stallard). Strahlentherapie 136: 170–177PubMedGoogle Scholar
  111. Martinez A, Edmundson GK, Cox RS, Gunderson LL, Howes AE (1985) Combination of external beam irradiation and multiple-site perinea] applicator ( MUPIT) for treatment of locally advanced or recurrent prostatic, anorectal, and gynecologic malignancies. Int J Radiat Oncol Biol Phys 11: 391–398Google Scholar
  112. Mayles WPM, Mayles HMO, Turner PC (1985) Physical aspects of interstitial therapy using flexible iridium-192 wire. Br J Radiol 58: 529–535PubMedCrossRefGoogle Scholar
  113. Mc Kay A, Gutin P, Hosobuchi et al. (1981) CT-stereo taxis and interstitial radiation for brain tumour. In: Moss AA, Goldberg HI (eds) International radiologic techniques: computerized tomography and ultrasonography University of California Printing Department, Berkley, pp 93–99Google Scholar
  114. Mechtel M, Müller RG (1988) Rechnerische Kriterien zur Beurteilung von Quellenverteilungen in der interstitiellen Therapie. In: Nüsslin F (ed) Medizinische Physik. Deutsche Gesellschaft für Medizinische Physik, pp 441–445Google Scholar
  115. Meertens H, Bartelink H, Minderhoud T (1988) First clinical experience with a remote afterloading system for low dose rate interstitial breast implants. Radiother Oncol 11: 387–393PubMedCrossRefGoogle Scholar
  116. Meisberger LL, Keller RJ, Shalek RJ (1968) The effective attenuation in water of the gamma-rays of gold-198, iridium-192, caesium-137, radium-226 and cobalt-60. Radiology 90: 953–957PubMedGoogle Scholar
  117. Meredith WJ (ed) (1967) The Manchester system, 2nd edn. Livingston, EdinburghGoogle Scholar
  118. Meredith WJ, Stephenson SK (1945a) The calculation of dosage and an additional distribution rule of cylindrical “volume” implantations with Radium. Br J Radiol XVIII: 45–47Google Scholar
  119. Meredith WJ, Stephenson SK (1945b) The use of radiographs for dosage control in interstitial gamma-ray therapy. Br J Radiol XVIII: 86–91Google Scholar
  120. Mohan R, Anderson LL (1978) In: BRACHY I I, Interstitial and intracavitary dose computation program user’s guide. Memorial Sloan-Kettering Cancer Center, New YorkGoogle Scholar
  121. Mohan R (1981) Computers in brachytherapy dose computation — the Memorial System. In: Shearer DR (ed) Recent advances in brachytherapy physics. Medical Physics Monograph no 7, American Association Institute of Physics, New York pp 134–143Google Scholar
  122. Müller RG (1984) Bestrahlungsplanung bei der interstitiellen Therapie. In: Schmidt T (ed) Medizinische Physik. Deutsche Gesellschaft für Medizinische Physik, pp 87–96Google Scholar
  123. Müller RG (1985) A cell-kinetic model for dose response to low dose rate and fractionated irradiation. Radiat Prot Dosim 13: 185–189Google Scholar
  124. Müller RG (1985) A cell-kinetic model for dose response to low dose rate and fractionated irradiation. Radiat Prot Dosim 13: 185–189Google Scholar
  125. Müller RG, Thiel HJ, During A (1986) Die Computertomographie als Grundlage für die Bestrahlungsplanung und Dosisberechnung bei der Kombination von interstitieller und perkutaner Strahlentherapie. In: Fromm-hold W, Hübner KH (eds) Computertomographie in der Strahlentherapie. Thime, StuttgartGoogle Scholar
  126. Mussel LE (1956) The rapid reconstruction of radium implants: a new technique. Br J Radiol 29: 402–4087CrossRefGoogle Scholar
  127. Nag S (1985) Transperineal Iodine-125 implantation of the prostate under transrectal ultrasound and fluoroscopic control. Endocurie Hypertherm Oncol 1: 207–211Google Scholar
  128. Neblett DL, King CJ, Schaeflein JW, Haymond HR (1978) Computerized dose distribution estimation system. Front Radiat Ther Oncol 12: 35–41Google Scholar
  129. Neblett, DL, Syed AMN, Puthawala AA, Harrop R, Fray HS, Hogan SE (1985) An interstitial implant technique evaluated by contiguous volume analysis. Endocurie Hypertherm Oncol 1: 213–222Google Scholar
  130. Nori D, Hilaris BS, Batata MA, Moorthy CR, Hopfan S (1983) Remote afterloading in cancer management Part II. Clinical applications of remote afterloaders. In: Hilaris BS, Batata MA (eds) Brachytherapy oncology 1983. Memorial Sloan Kettering Cancer Center, New York, pp 101–118Google Scholar
  131. Nuttal JR, Spiers FW (1946) Dosage control in interstitial radium therapy. The general infirmary at Leeds. Br J Radiol 19: 135–142Google Scholar
  132. Order SE (1981) Monoclonal antibody: potential role in radiation therapy and oncology. Int J Radiat Oncol Biol Phys 8: 1193–1201Google Scholar
  133. Order SE (1984) Radioimmunoglobulin therapy of cancer. Compr Ther 10: 9PubMedGoogle Scholar
  134. Order SE, Sleeper AM, Stillwagon GB, Klein JL, Leichner PK (1990) Radiolabeled antibodies: results and potential in cancer therapy. Cancer Res [Suppl] 50: 1011–1013Google Scholar
  135. Orton CG (1974) Time dose factors (TDFs) in brachytherapy. Br J Radiol 47: 603–607PubMedCrossRefGoogle Scholar
  136. Orton CG (1980) Re-assessment of normalization between fractionated and continuous radiotherapy for the CRE and TDF equation. Br J Radiol 53: 374–375PubMedCrossRefGoogle Scholar
  137. Orton CG (1981) Radiological dose rate considerations with remote afterloading. In: Shearer DR (ed) Recent advances in brachytherapy physics. American Institute of Physics, New York, pp 190–200Google Scholar
  138. Paterson R (1963) The treatment of malignant disease by radiotherapy, 2nd edn. Anrnold, LondonGoogle Scholar
  139. Paterson R, Parker HM (1934) A dosage system for gamma-ray therapy. Br J Radiol VII: 592Google Scholar
  140. Paterson R, Parker HM (1938) A dosage system for interstitial radium therapy. Br J Radiol XI: 252Google Scholar
  141. Paterson R, Parker HM, Spiers FW (1936) A system of dosage for cylindrical distributions of Radium. Br J Radiol IX: 487Google Scholar
  142. Paul MJ, Koch RF, Philip PC, Kahn FR (1987) Comparison of brachytherapy dosimetry systems: biplanar implant with equal and unequal areas. Endocurie Hypertherm Oncol 3: 55–66Google Scholar
  143. Paul MJ, Koch RF, Philip PC (1988) Uniform analysis of dose distribution in interstitial brachytherapy dosimetry systems. Eur J Radiother Oncol (accepted)Google Scholar
  144. Perez, CA, Brady LW (1987) Principles and practice of radiation oncology. Lippincott, PhiladelphiaGoogle Scholar
  145. Perez CA, Glasgow GP (1987) Clinical applications of brachytherapy. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology. Lippincott, Philadelphia, pp 252–290Google Scholar
  146. Perez CA, Kuske R, Glasgow GP (1985) Review of brachytherapy for gynecologic tumors. Endocuriether Hyperthermia Oncol 1: 153–175Google Scholar
  147. Pierquin B, Dutreix A (1966) Pour une nouvelle méthodologie en curiethérapie; le Système de Paris (endo et plésio — radiothérapie avec préparation non radioactive). Note préliminare. Ann Radiol 9: 757–760Google Scholar
  148. Pierquin B, Fayos JV (1962) Dosimetry by tomography in interstitial curietherapy: point technique. J Roentgenol 87: 585–592Google Scholar
  149. Pierquin B, Chassagne D, Gasiorowski M (1960) Technique de dosimétrie en curiethérapie interstitielle par tomographie transversalle. Acta Radiol 53: 314–320PubMedCrossRefGoogle Scholar
  150. Pierquin B, Chassagne D, Baillet F, Paine CH (1973) Clinical observations on time-factor in interstitial radiotherapy using iridium-192. Clin Radiol 24: 506–509PubMedCrossRefGoogle Scholar
  151. Pierquin B, Chassagne DJ, Chahbazian ChM, Wilson JF (1978) Brachytherapy. Warren H. Green, St. LuisGoogle Scholar
  152. Pierquin B, Calitchi E, Mazeron JJ, le Bourgeois JP, Leung S (1985) A comparison between low dose rate radiotherapy and conventionally fractionated irradiation in moderately extensive cancers of the oropharynx. Int J Radiat Oncol Biol Phys 11: 431–439PubMedCrossRefGoogle Scholar
  153. Pierquin B, Wilson JF, Chassagne D (1987) Modern brachytherapy. Masson, New YorkGoogle Scholar
  154. Powers WE, Schneider AK, Schumate K, Fotenos H, Gallagher T (1969) Evaluation of methods of computer estimation of interstitial and intracavitary dosimetry. Am J Roentgenol Rad Ther Nucl Med 96: 59–65Google Scholar
  155. Puthawala AA, Syed AM, Tannsey LA, Shanberg A, Austin PA, McNamara CS (1985) Temporary iridium-192 implant in the management of carcinoma of prostate. Endocuriether Hyperthermia Oncol 1: 25–34Google Scholar
  156. Quimby EH (1922) The effect of the size of radium applicators on skin doses. Am J Roentgenol 9: 671–683Google Scholar
  157. Quimby EH (1932) The grouping of radium tubes in packs or plaques to produce the desired distribution of radiation. Am J Roentgenol 27: 18–39Google Scholar
  158. Quimby EH (1944) Dosage tables for linear radium sources. Radiology 43: 572–577Google Scholar
  159. Quimby EH (1947) Radium Dosage in Radium Therapy. Am J Roentgenol 57: 622–627Google Scholar
  160. Quimby EH, Castro V (1953) The calculation of dosage in interstitial radium therapy. J Roentgenol 70: 739–749Google Scholar
  161. Regaud C (1929) Radium therapy of cancer at the radium institute of Paris. Am J Roentgenol 21: 1–24Google Scholar
  162. Rosenthal MS, Nath R (1983) An automatic seed identification technique for interstitial implants using thee isocentric radiographs. Med Phys 10: 475–479PubMedCrossRefGoogle Scholar
  163. Rotte K, Linka F, Felder KD (1973) Intracavitäre Bestrahlung des Uteruskarzinoms durch ein Afterloading-Gerät mit punktförmiger Iridium-192-Quelle. Strahlentherapie 145: 523–528PubMedGoogle Scholar
  164. Rubin P, Cowen RB, Rubin DJ (eds) (1979) The radiation oncology research program: Recommended research proposals. Int J Radiat Oncol Biol Phys 5: 595Google Scholar
  165. Rubin P, Tubiana M, Brady L (eds) (1988) International clinical trials in radiation oncology ICTRO. Int J Radiat Oncol Biol Phys 14 Suppl: S1 - S214Google Scholar
  166. Saw CB, Suntharalingam N (1988) Reference dose rates for single-and double-plane 192-Ir implants. Med Phys 15: 391–396PubMedCrossRefGoogle Scholar
  167. Seay DG, Hilbert JW, Moeller J, Alderman SJ, von Essen CF (1972) Therapy using a new remote-controlled high-intensity afterloading device. Radiology 105: 709–711PubMedGoogle Scholar
  168. Seitz L, Wintz H (1920) Die kombinierte RöntgenRadiumbehandlung im Rahmen der biologischen Dosierung. Zentralbl Gynakol 44: 529–536Google Scholar
  169. Seydel HG (1977) Interstitial implantation in head and neck cancer. Semin Oncol 4: 399–406PubMedGoogle Scholar
  170. Shalek RJ, Stovall M (1968) The M.D. Anderson method for the computation of isodose curves around interstitial and intracavitary radiation sources. I. Dose from linear sources. Am J Roentgenol, Radium ther Nucl Med 102: 662–672Google Scholar
  171. Shalek RJ, Stovall M (1990) Brachytherapy Dosimetry. In: Kase KR, Bjärngard BE, Attix FH (eds) The dosimetry of ionizing radiation Vol III, Academic Press, San Diego, pp 259–321Google Scholar
  172. Shapiro A, Schwatz B, Windham JP, Kereiakes JG (1976) Calculated neutron dose rates and flux densities from implantable Californium-252 point and line sources. Med Phys 3: 241–247PubMedCrossRefGoogle Scholar
  173. Shearer DR (ed) (1981) Recent advances in brachytherapy physics. Medical Physics Monograph no 7, American Association of Physicists in Medicin. American Institute of Physics, New YorkGoogle Scholar
  174. Siegel JA, Pawlyk DA, Lee RE, Sasso NL, Horowitz JA, Sharkey RM, Goldenberg DM (1990) Tumor, red marrow, and organ dosimetry for 131-I-labeled anticarcinoembryonic antigen monoclonal antibody. Cancer Res [Suppl] 50: 1039–1042Google Scholar
  175. Sievert RM (1921) Die Intensitätsverteilung der primären — Strahlung in der Nähe medizinischer Radiumpräparate. Acta Radiol 1: 89–128CrossRefGoogle Scholar
  176. Somocovitis D, Young MEJ, Batho HF (1967) Apparent absorption of the gamma rays of radium in water. Br J Radiol 40: 771–777CrossRefGoogle Scholar
  177. Spencer RP (ed) (1978) Therapy in nuclear medicine. Grune and Stratton, New YorkGoogle Scholar
  178. Stovall M, Shalek RJ (1972) A review of computer techniques for dosimetry of interstitial and intracavitary radiotherapy. Comput Programs Biomed 1: 125–136CrossRefGoogle Scholar
  179. Suit HD, Moore EB, Fletcher GH, Wornsnop R (1963) Modifications for Fletcher ovoid system of afterloading using standard-sized radium tubes (milligram and microgram). Radiology 81: 126–131PubMedGoogle Scholar
  180. Syed AMN, Feder BH (1977) Technique of afterloading interstitial implants. Radiol Clin 46: 458–475Google Scholar
  181. Syed AMN (1983) Temporary iridium-192 implantation in the management of carcinoma of the prostate. In: Hilaris BS, Batata MA (eds) Brachytherapy Oncology— 1983 pp 83–91, Memorial Sloan-Kettering Cancer Center, New YorkGoogle Scholar
  182. Thiel HJ, Müller RG, Weidenbecher M, Sauer R (1987) Interstitielle Brachycurietherapie von HNO-Tumoren. In: Sauer R, Schwab W (eds) Kombinationstherapie der Oropharynx-und Hypopharynxkarzinome. Urban and Schwarzenberg, MunichGoogle Scholar
  183. Thiel HJ, Herbst M, Fietkau R, Sauer R, Müller RG, Müller W, Puthawala A, Stauner J (1989) Ein neues vielkanaliges System (Inter-Pal-C-38). Strahlenther Onkol 165: 802–806PubMedGoogle Scholar
  184. Tod MC, Meredith WJ (1938) A dosage system for use in the treatment of cancer of the uterine cervix. Br J Radiol 11: 809CrossRefGoogle Scholar
  185. Trott NG (ed) (1987) Radionuclides in brachytherapy: radium and after. Br J Radiol Suppl 21Google Scholar
  186. Vaeth JM (ed) (1978) Renaissance of interstitial brachytherapy. Karger, BaselGoogle Scholar
  187. Vikram B, Hilaris BS (1981) A non-looping afterloading technique for interstitial implants of the base of the tongue. Int J Radiat Oncol Biol Phys 7: 419–422PubMedCrossRefGoogle Scholar
  188. Waggener R, Lange J, Feldmeier J, Eagan P, Martin S (1989) 137-Cs dosimetry table for asymmetric source. Med Phys 16: 305–308Google Scholar
  189. Wasserman TH, Kligerman M (1987) Chemical modifiers of radiation effects. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology. Lippincott, Philadelphia, pp 360–376Google Scholar
  190. Webb S, Fox RA (1979) The dose in water surrounding point isotropic gamma-ray emitters. Br J Radiol 52: 482–484PubMedCrossRefGoogle Scholar
  191. Welsh AD, Dixon-Brown A, Stedeford JBH (1983) Calculation of dose distribution for Iridium-192 implants. Acta Radiol 22: 331–336CrossRefGoogle Scholar
  192. Wessels BW (1990) Current status of animal radioimmunotherapy. Cancer Res [Suppl] 50: 970–973Google Scholar
  193. Whithers HR (1987) Biologic basis of radiation therapy. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology. Lippincott, Philadelphia, pp 67–98Google Scholar
  194. Wickham L, Degrais P (1910) Radiumtherapy. Funk and Wagnalls, New YorkGoogle Scholar
  195. Wilkinson JM, Moore CJ, Notley HM, Hunter RD (1983) The use of Selectron afterloading equipment to stimulate and extend the Manchester system for intracavitary therapy of the cervix uteri. Br J Radiol 56: 409–414PubMedCrossRefGoogle Scholar
  196. Williams LE, Beatty BG, Beatty JD, Wong JYC, Paxton RJ, Shievly JE (1990) Estimation of monoclonal antibody-associated 90-Y activity needed to achieve certain tumor radiation doses in colorectal cancer patients. Cancer Res [Suppl] 50: 1029–1030Google Scholar
  197. Williamson JF (1986) The acuracy of the line and point source approximations in Ir-192 dosimetry. Int J Radiat Oncol Biol Phys 12: 409–414PubMedCrossRefGoogle Scholar
  198. Williamson JF (1988) Monte Carlo evaluation of specific dose constants in water for 125-I seeds. Med Phys 15: 686–694PubMedCrossRefGoogle Scholar
  199. Williamson JF, Morin RL, Kahn FM (1983A) Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry. Phys Med Biol 28: 1021–1032PubMedCrossRefGoogle Scholar
  200. Williamson JF, Morin RL, Kahn FM (1983B) Dose calibrator response to brachytherapy sources; a Monte Carlo and analytic evaluation. Med Phys 10: 135–140PubMedCrossRefGoogle Scholar
  201. Wood RG (1981) Computers in radiotherapy planning. Research Studies Press, ChichesterGoogle Scholar
  202. Wu A, Ulin K, Sternick ES (1988) A dose homogeneity index for evaluating 192-Ir interstitial breast implants. Med Phys 15: 104–107PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Reinhold G. Müller
    • 1
  1. 1.Institut für RadiologieErlangenGermany

Personalised recommendations