Skip to main content

Fundamentals in Physics

  • Chapter
  • 115 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Almost immediately after its discovery by Marie and Pierre Curie in 1898, radium was used to treat cancer. For years, plesiocurietherapy and interstitial therapy were performed using radium and its daughter element radon. With the advent of nuclear reactors, many new isotopes became available in the 1950s: needles of cobalt 60 (Myers 1948) tantalum-182 wires, gold 198, and iridium 192 (Sinclair 1952; Myers et al. 1953; Henschke et al. 1953). They gradually replaced radium. Now, artificially produced radionuclides such as caesium 137, iridium 192 and more recently iodine 125 and ruthenium 106 have largely supplanted radium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernard M, Guille B, Duvalet G (1975) Mesure du débit d’exposition linéique nominal des sources à une dimension utilisées en curiethérapie. J Radiol Electrol 56: 785–790

    PubMed  CAS  Google Scholar 

  • British Commission on Radiological Units (1984) Specification of brachytherapy sources. Br J Radiol 57: 941–942

    Article  Google Scholar 

  • Comité Francais de Mesure des Rayonnements Ionisants (1983) Recommandations pour la détermination des doses absorbées en curiethérapie. Bureau National de Metrologie, Paris (CFMRI report, no 1 )

    Google Scholar 

  • Dutreix A, Marinello G, Wambersie A (1982) Dosimétrie en curiethérapie. Masson, Paris

    Google Scholar 

  • Godden TJ (1988) Physical aspects of brachytherapy. Hilger, Bristol (Medical physics handbooks, vol 19 )

    Google Scholar 

  • Henschke UK, James AG, Myers WG (1953) Radiogold seeds for cancer therapy. Nucleonics 11: 46–48

    Google Scholar 

  • International Atomic Energy Agency (1967) Physical aspects of radio-isotope brachytherapy Technical report series, no 75, IAEA, Vienna

    Google Scholar 

  • International Commission on Radiological Units and Measurements (1970) Specification of high activity gamma ray sources. ICRU, Washington (Report no 18 )

    Google Scholar 

  • International Commission on Radiological Units and Measurements (1980) Radiation quantities and units. ICRU, Washington (Report no 33 )

    Google Scholar 

  • International Commission on Radiological Units and Measurements (1984) Dose and volume specification for reporting intracavitary therapy in gynecology. ICRU, Washingon (Report no 38 )

    Google Scholar 

  • Johns HE, Cunningham JR (1983) The physics of radiology. Thomas, Springfield

    Google Scholar 

  • Jones CH (1988) Quality assurance in gynecological brachytherapy. In: Dosimetry in radiotherapy, vol 1. pp 275–290. Edited by International Atomic Energy Agency, Vienna

    Google Scholar 

  • Myers WG (1948) Application of artifically radioactive isotopes in therapy: cobalt 60. AJR 60: 816–823

    CAS  Google Scholar 

  • Myers WG, Colmeny BH, McLellon WM (1953) Radioactive gold-198 for gamma radiation therapy. AJR 70: 258

    CAS  Google Scholar 

  • National Commission on Radiological Protection (1974) Specification of gamma ray brachytherapy sources. NCRP, Washington (Report no 41 ).

    Google Scholar 

  • Payne WH, Waggener RG (1974) A theorical calculation of the exposure rate constant for radium-226. Med Phys 1: 210–214

    Article  PubMed  CAS  Google Scholar 

  • Pierquin B, Wilson JF, Chassagne D (1987) Modern brachytherapy. Masson, Paris

    Google Scholar 

  • Rosenwald JC, Dutreix A (1970) Etude d’un programme sur ordinateur pour le calcul des doses en curiethérapie gynecologique. J Radiol Electrol 51: 651–654

    PubMed  CAS  Google Scholar 

  • Shalek R, Stovall M (1968) The M.D. Anderson method for computation of isodose curves around interstitial and intracavitary radiation sources. I. Dose from linear sources. AJR 102: 662–672

    Google Scholar 

  • Sinclair WK (1952) Artificial radioactive sources for interstitial therapy. Br J Radiol 25: 417–419

    Article  PubMed  CAS  Google Scholar 

  • Stovall M, Shalek RJ (1968) The M.D. Anderson method for the computation of isodose curves around interstitial and intracavitary sources. III. Roentgenograms for input data and the relation of isodose calculations to the Paterson Parker System. AJR 102: 677–687

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marinello, G. (1991). Fundamentals in Physics. In: Sauer, R. (eds) Interventional Radiation Therapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84163-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84163-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84165-1

  • Online ISBN: 978-3-642-84163-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics