Skip to main content

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 4))

Abstract

RecBCD enzyme, also called exonuclease V (EC 3.1.11.5), is unusual among nucleases in its requirement for ATP. This large, three subunit enzyme has multiple enzymatic activities and plays important roles in many aspects of DNA metabolism, including recombination, repair and replication. Although the Escherichia coli RecBCD enzyme has been the most thoroughly investigated one, RecBCD-like enzymes have been reported from many bacterial species, both gram-negative and gram-positive (reviewed by Muskavitch and Linn 1981; see also Schultz and Smith 1986; McKittrick and Smith 1989). In this review I describe RecBCD enzyme’s activities and discuss how these activities may participate in cellular DNA metabolism. For a more extensive review and additional references see Taylor (1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amundsen SK, Taylor AF, Chaudhury AM, Smith GR (1986) recD: The gene for an essential third subunit of exonuclease V. Proc Natl Acad Sci USA 83: 5558–5562

    Google Scholar 

  • Amundsen SK, Neiman AM, Thibodeaux SM, Smith GR (1990) Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics (in press)

    Google Scholar 

  • Anai M, Fujiyoshi T, Nakayama J, Takagi Y (1979) Inhibition of the recBC enzyme of Escherichia coli by specific binding of pyridoxal 5’-phosphate to DNA binding site. J Biol Chem 254: 10853–10856

    PubMed  CAS  Google Scholar 

  • Anai M, Fujiyoshi T, Nakayama J, Takagi Y (1979) Inhibition of the recBC enzyme of Escherichia coli by specific binding of pyridoxal 5’-phosphate to DNA binding site. J Biol Chem 254: 10853–10856

    Google Scholar 

  • Austin S, Ziese M, Sternberg N (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25: 729–736

    Article  PubMed  CAS  Google Scholar 

  • Bailone A, Sommer S, Devoret R (1985) Mini-F plasmid-induced SOS signal in Escherichia coli is RecBC dependent. Proc Natl Acad Sci USA 82: 5973–5977

    Article  PubMed  CAS  Google Scholar 

  • Belfort M, Maley G, Pedersen-Lane J, Maley F (1983) Primary structure of the Escherichia coli thy A gene and its thymidylate synthase product. Proc Natl Acad Sci USA 80: 4914–4918

    Article  PubMed  CAS  Google Scholar 

  • Biek DP, Cohen SN (1986) Identification and characterization of recD, a gene affecting plasmid maintenance and recombination in Escherichia coli. J Bacteriol 167: 594–603

    PubMed  CAS  Google Scholar 

  • Braedt G, Smith GR (1989) Strand specificity of DNA unwinding by RecBCD enzyme. Proc Natl Acad Aci USA 86: 871–875

    Article  CAS  Google Scholar 

  • Brown K, Finch PW, Hickson ID, Emmerson PT (1987) Complete sequence of the Escherichia coli argA gene. Nucleic Acids Res 15: 10586

    Article  PubMed  CAS  Google Scholar 

  • Capaldo-Kimball F, Barbour SD (1971) Involvement of recombination genes in growth and viability of Escherichia coli K-12. J Bacteriol 106: 204–212

    PubMed  CAS  Google Scholar 

  • Capaldo-Kimball F, Barbour SD (1971) Involvement of recombination genes in growth and viability of Escherichia coli K-12. J Bacteriol 106: 204–212

    PubMed  CAS  Google Scholar 

  • Chaudhury AM, Smith GR (1984b) A new class of Escherichia coli recBC mutants: Implications for the role of RecBC enzyme in homologous recombination. Proc Natl Acad Sci USA 81: 7850–7854

    Google Scholar 

  • Chaudhury AM, Smith GR (1985) Role of Escherichia coli RecBC enzyme in SOS induction. Mol Gen Genet 201: 525–528

    Article  PubMed  CAS  Google Scholar 

  • Cheng KC, Smith GR (1987) Cutting of Chi-like sequences by the RecBCD enzyme of Escherichia coli. J Mol Biol 194: 747–750

    Article  PubMed  CAS  Google Scholar 

  • Cheng KC, Smith GR (1989) Distribution of Chi-stimulated recombinational exchanges and heteroduplex endpoints in phage lambda. Genetics 123: 5–17

    PubMed  CAS  Google Scholar 

  • Cohen A, Clark AJ (1986) Synthesis of linear plasmid multimers in Escherichia coli K12. J Bacteriol 167: 327–335

    PubMed  CAS  Google Scholar 

  • Drlica K (1984) Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev 48: 273–289

    PubMed  CAS  Google Scholar 

  • Dykstra CC, Prasher D, Kushner SR (1984) Physical and biochemical analysis of the cloned recB and recC genes of Escherichia coli K-12. J Bacteriol 157: 21–27

    PubMed  CAS  Google Scholar 

  • Egner C, Berg DE (1981) Excision of transposon Tn5 is dependent on the inverted repeats but not on the transposase function of Tn5. Proc Natl Acad Sci USA 78: 459–463

    Article  PubMed  CAS  Google Scholar 

  • Eichler DC, Lehman IR (1977) On the role of ATP in phosphodiester bond hydrolysis catalyzed by the RecBC deoxyribonuclease of Escherichia coli. J Biol Chem 252: 499–503

    PubMed  CAS  Google Scholar 

  • Emmerson PT (1968) Recombination deficient mutants of Escherichia coli K12 that map between thyA and argA. Genetics 60: 19–30

    PubMed  CAS  Google Scholar 

  • Ennis DG, Amundsen SK, Smith GR (1987) Genetic functions promoting homologous recombination in Escherichia coli: A study of inversions in phage λ. Genetics 115: 11–24

    Google Scholar 

  • Enquist LW, Skalka A (1973) Replication of bacteriophage lambda DNA dependent on the function of host and viral genes. I. Interaction of red, gam, and rec. J Mol Biol 75: 185–212

    Article  PubMed  CAS  Google Scholar 

  • Finch PW, Storey A, Brown K, Hickson ID, Emmerson PT (1986a) Complete nucleotide sequence of recD, the structural gene for the alpha subunit of exonuclease V of Escherichia coli. Nucleic Acids Res 14: 8583–8594

    Article  PubMed  CAS  Google Scholar 

  • Finch PW, Storey A, Chapman KE, Brown K, Hickson ID, Emmerson PT (1986b) Complete nucleotide sequence of the Escherichia coli recB gene. Nucleic Acids Res 14: 8573–8582

    Article  PubMed  CAS  Google Scholar 

  • Finch PW, Wilson RE, Brown K, Hickson ID, Emmerson PT (1986c) Complete nucleotide sequence of the Escherichia coli ptr gene encoding protease III. Nucleic Acids Res 14: 7695–7703

    Article  PubMed  CAS  Google Scholar 

  • Finch PW, Wilson RE, Brown K, Hickson ID, Tomkinson AE, Emmerson PT (1986d) Complete nucleotide sequence of the Escherichia coli recC gene and of the thyA-recC intergenic region. Nucleic Acids Res 14: 4437–4451

    Article  PubMed  CAS  Google Scholar 

  • Foster T, Lundblad V, Hanley S, Hailing M, Kleckner N (1981) Three Tn10 associated excision events: relationship to transposition and role of direct and inverted repeats. Cell 23: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Glickman BW (1979) rorA mutation of Escherichia coli K-12 affects the recB subunit of exonuclease V. J Bacteriol 137: 658–660

    Google Scholar 

  • Glickman BW, Zwenk H, van Sluis CA, Rörsch A (1971) The isolation and characterization of an X-ray-sensitive ultraviolet-resistant mutant of Escherichia coli. Biochim Biophys Acta 254: 144–154

    PubMed  CAS  Google Scholar 

  • Goldmark PJ, Linn S (1972) Purification and properties of the RecBC DNase of Escherichia coli K-12. J Biol Chem 247: 1849–1860

    PubMed  CAS  Google Scholar 

  • Gudas LJ, Pardee AB (1976) DNA synthesis inhibition and the induction of protein X in Escherichia coli. J Mol Biol 101: 459–477

    Article  PubMed  CAS  Google Scholar 

  • Haefner K (1968) Spontaneous lethal sectoring, a further feature of Escherichia coli strains deficient in the function of rec and uvr genes. J Bacteriol 96: 652–659

    PubMed  CAS  Google Scholar 

  • Hakkaart MJJ, Valtkamp E, Nijkamp HJJ (1982) Maintenance of the bacteriocinogenic plasmid CloDF13 in Escherichia coli II. Specific recombination functions involved in plasmid maintenance. Mol Gen Genet 188: 338–344

    Google Scholar 

  • Hickson ID, Emmerson PT (1981) Identification of the Escherichia coli recB and recC gene products. Nature 294: 578–580

    Article  PubMed  CAS  Google Scholar 

  • Hickson ID, Robson CN, Atkinson KE, Hutton L, Emmerson PT (1985) Reconstitution of RecBC DNase activity from purified Escherichia coli RecB and RecC proteins. J Biol Chem 260: 1224–1229

    PubMed  CAS  Google Scholar 

  • Hoekstra WPM, Bergmans JEN, Zuidweg EM (1980) Role of recBC nuclease in Escherichia coli transformation. J Bacteriol 143: 1031–1032

    PubMed  CAS  Google Scholar 

  • Irbe RM, Morin LM, Oishi M (1981) Prophage (ɸ80) induction in Escherichia coli K-12 by specific deoxyoligonucleotides. Proc Natl Acad Sci USA 78: 138–142

    Article  PubMed  CAS  Google Scholar 

  • Julin DA, Lehman IR (1987) Photoaffinity labelling of the RecBCD enzyme of Escherichia coli with 8-azidoadenosine 5’-triphosphate. J Biol Chem 262: 9044–9051

    PubMed  CAS  Google Scholar 

  • Karu AE, Linn S (1972) Uncoupling of the RecBC ATPase from DNase by DNA crosslinked with psoralen. Proc Natl Acad Sci USA 69: 2855–2859

    Article  PubMed  CAS  Google Scholar 

  • Karu AE, MacKay V, Goldmark PJ, Linn S (1973) The RecBC deoxyribonuclease of Escherichia coli K-12. Substrate specificity and reaction intermediates. J Biol Chem 248: 4874–4884

    Google Scholar 

  • Karu AE, Sakaki Y, Echols H, Linn S (1975) The gamma protein specified by bacteriophage lambda. Structure and inhibitory activity for the RecBC enzyme of Escherichia coli. J Biol Chem 250: 7377–7387

    PubMed  CAS  Google Scholar 

  • Kobayashi I, Stahl MM, Stahl FW (1984) The mechanism of the Chi-cos interaction in RecA-RecBC-mediated recombination in phage λ. Cold Spring Harbor Symp Quant Biol 49: 497–505

    PubMed  CAS  Google Scholar 

  • Kolodner R, Fishel RA, Howard M (1985) Genetic recombination of bacterial plasmid DNA: Effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 163: 1060–1066

    PubMed  CAS  Google Scholar 

  • Konforti B, Davis RW (1987) 3’ homologous free ends are required for stable joint molecule formation by the RecA and single-stranded binding proteins of Escherichia coli. Proc Natl Acad Sci USA 84: 690–694

    Article  PubMed  CAS  Google Scholar 

  • Konforti BB, Davis RW (1990) A 3’ homologous free end and a RecA-ssDNA complex are two independent requirements for stable joint molecule formation. J Biol Chem 265: 6916–6920

    PubMed  CAS  Google Scholar 

  • Kowalczykowski SC, Roman LJ (1990) Reconstitution of homologous pairing activity dependent upon the combined activities of purified E. coli RecA, RecBCD, and SSB proteins. In: Richardson C, Lehman IR (eds) Molecular mechanisms in DNA replication and recombination: UCLA symposia on molecular and cellular biology, new series. Alan R Liss, New York pp 357–373

    Google Scholar 

  • Krasin F, Hutchinson F (1977) Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol 116: 81–98

    Article  PubMed  CAS  Google Scholar 

  • Lam ST, Stahl MM, McMilin KD, Stahl FW (1974) Rec-mediated recombinational hotspot activity in bacteriophage lambda. II. A mutation which causes hotspot activity. Genetics 77: 425–433

    Google Scholar 

  • Lieberman RP, Oishi M (1974) The RecBC deoxyribonuclease of Escherichia coli: isolation and characterization of the subunit proteins and reconstitution of the enzyme. Proc Natl Acad Sci USA 71: 4816–4820

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Lovett ST, Kolodner RD (1989) Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci USA 86: 2627–2631

    Article  PubMed  CAS  Google Scholar 

  • Lovett ST, Luisi-DeLuca C, Kolodner RD (1988) The genetic dependence of recombination in recD mutants of Escherichia coli. Genetics 120: 37–45

    PubMed  CAS  Google Scholar 

  • Lundblad V, Taylor AF, Smith GR, Kleckner N (1984) Unusual alleles of recB and recC stimulate excision of inverted repeat transposons Tn10 and Tn5. Proc Natl Acad Sci USA 81: 824–828

    Article  PubMed  CAS  Google Scholar 

  • Matson SW (1990) DNA helicases. Annu Rev Biochem 59: (in press)

    Google Scholar 

  • McKittrick NH, Smith GR (1989) Activation of Chi recombinational hotspots by RecBCD-like enzymes from enteric bacteria. J Mol Biol 210: 485–495

    Article  PubMed  CAS  Google Scholar 

  • McPartland A, Green L, Echols H (1980) Control of recA gene RNA in E. coli: regulatory and signal genes. Cell 20: 731–737

    Article  PubMed  CAS  Google Scholar 

  • Muriaido H (1988) Lethal effect of λ DNA terminase in recombination-deficient Escherichia coli. Mol Gen Genet 213: 42–49

    Article  Google Scholar 

  • Muskavitch KMT, Linn S (1981) RecBC-like enzymes: Exonuclease V deoxyribonucleases. In: Boyer PD (ed) The enzymes, vol. 14. Academic Press, New York, pp 233–250

    Google Scholar 

  • Muskavitch KMT, Linn S (1982) A unified mechanism for the nuclease and unwinding activities of the RecBC enzyme of Escherichia coli. J Biol Chem 257: 2641–2648

    PubMed  CAS  Google Scholar 

  • Oishi M (1988) Induction of recombination-related functions (SOS functions) in response to DNA damage. In: Low KB (ed) The recombination of genetic material. Academic Press, New York, pp 445–491

    Google Scholar 

  • Oishi M, Cosloy SD (1972) The genetic and biochemical basis of the transformability of Escherichia coli K12. Biochem Biophys Res Commun 49: 1568–1572

    Article  PubMed  CAS  Google Scholar 

  • Oliver DB, Goldberg EB (1977) Protection of parental T4 DNA from a restriction exonuclease by the product of gene 2. J Mol Biol 116: 877–881

    Article  PubMed  CAS  Google Scholar 

  • Palas KM, Kushner SR (1990) Biochemical and physical characterization of the catalytic activities of the RecBC and RecBCD enzymes. J Biol Chem 265: 3447–3454

    PubMed  CAS  Google Scholar 

  • Ponticelli AS, Schultz DW, Taylor AF, Smith GR (1985) Chi-dependent DNA strand cleavage by RecBC enzyme. Cell 41: 145–151

    Article  PubMed  CAS  Google Scholar 

  • Radding CM (1988) Homologous pairing and strand exchange promoted by Escherichia coli RecA protein. In: Kucherlapati R, Smith GR (eds) Genetic recombination. American Society for Microbiology, Washington DC, pp 193–229

    Google Scholar 

  • Resnick MA (1976) The repair of double-strand breaks in DNA: a model involving recombination. J Theor Biol 59: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Roman LJ, Kowalczykowski SC (1989a) Characterization of the helicase activity of Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28: 2863–2873

    Article  PubMed  CAS  Google Scholar 

  • Roman LJ, Kowalczykowski SC (1989b) Characterization of the adenosinetriphosphate activity of the Escherichia coli RecBCD enzyme: relationship of ATP hydrolysis to the unwinding of duplex DNA. Biochemistry 28: 2873–2881

    Article  PubMed  CAS  Google Scholar 

  • Sargentini NJ, Smith KC (1986) Quantitation of the involvement of the recA, recB, recC, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of DNA double-strand breaks in Escherichia coli. Radiat Res 107: 58–72

    Article  PubMed  CAS  Google Scholar 

  • Schulman MJ, Hallick LM, Echols E, Signer ER (1970) Properties of recombination-deficient mutants of bacteriophage lambda. J Mol Biol 52: 501–520

    Article  Google Scholar 

  • Schultz DW, Smith GR (1986) Conservation of Chi cutting activity in terrestrial and marine enteric bacteria. J Mol Biol 189: 585–595

    Article  PubMed  CAS  Google Scholar 

  • Schultz DW, Smith GR (1986) Conservation of Chi cutting activity in terrestrial and marine enteric bacteria. J Mol Biol 189: 585–595

    Article  PubMed  CAS  Google Scholar 

  • Simmon VF, Lederberg S (1972) Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12. J Bacteriol 112: 161–169

    PubMed  CAS  Google Scholar 

  • Smith GR (1988a) Homologous recombination sites and their recognition. In: Low KB (ed) The recombination of genetic material. Academic Press, New York, pp 115–154

    Google Scholar 

  • Smith GR (1988b) Homologous recombination in prokaryotes. Microbiol Rev 52: 1–28

    PubMed  CAS  Google Scholar 

  • Smith GR (1989) Homologous recombination in Escherichia coli: Multiple pathways for multiple reasons. Cell 58: 807–809

    Article  PubMed  CAS  Google Scholar 

  • Smith GR, Kunes SM, Schultz DW, Taylor A, Triman KL (1981a) Structure of Chi hotspots of generalized recombination. Cell 24: 429–436

    Article  PubMed  CAS  Google Scholar 

  • Smith GR, Schultz DW, Taylor AF, Triman K (1981b) Chi Sites, RecBC enzyme, and generalized recombination. Stadler Genet Symp 13: 25–37

    Google Scholar 

  • Smith GR, Amundsen SK, Chaudhury AM, Cheng KC, Ponticelli AS, Roberts CM, Schultz DW, Taylor AF (1984) Roles of RecBC enzyme and Chi sites in homologous recombination. Cold Spring Harbor Symp Quant Biol 49: 485–495

    PubMed  CAS  Google Scholar 

  • Smith HO, Friedman EA (1972) An adenosine triphosphate-dependent deoxyribonuclease from Hemophilus influenzae Rd. II. Adenosine triphosphatase properties. J Biol Chem 247: 2854–2858

    Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Taylor AF (1988) RecBCD enzyme of Escherichia coli. In: Kucherlapati R, Smith GR (eds) Genetic recombination. American Society for Microbiology, Washington DC, pp 231–263

    Google Scholar 

  • Taylor A, Smith GR (1980) Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22: 447–457

    Article  PubMed  CAS  Google Scholar 

  • Taylor AF, Smith GR (1985) Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. J Mol Biol 185: 431–443

    Article  PubMed  CAS  Google Scholar 

  • Taylor AF, Smith GR (1990) Action of RecBCD enzyme on cruciform DNA. J Mol Biol 211: 117–134

    Article  PubMed  CAS  Google Scholar 

  • Taylor AF, Schultz DW, Ponticelli AS, Smith GR (1985) RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell 41: 153–163

    Article  PubMed  CAS  Google Scholar 

  • Van Dorp B, Benne R, Palitti F (1975) The ATP-dependent DNase from Escherichia coli rorA: a nuclease with changed enzymatic properties. Biochim Biophys Acta 395: 446–454

    PubMed  Google Scholar 

  • Wang TC, Smith KC (1983) Mechanisms for recF-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB cells. J Bacteriol 156: 1093–1098

    PubMed  CAS  Google Scholar 

  • Wang TC, Smith KC (1986) Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells. Mutat Res 165: 39–44

    PubMed  CAS  Google Scholar 

  • Wang TC, Smith KC (1989) The roles of RecBCD, Ssb and RecA proteins in the formation of heteroduplexes from linear-duplex DNA in vitro. Mol Gen Genet 216: 315–320

    Google Scholar 

  • Willetts NS, Clark AJ (1969) Characteristics of some multiply recombination-deficient strains of Escherichia coli. J Bacteriol 100: 231–239

    PubMed  CAS  Google Scholar 

  • Wilcox KW, Smith HO (1976) Mechanism of DNA degradation by the ATP-dependent DNase from Hemophilus influenzae Rd. J Biol Chem 251: 6127–6134

    PubMed  CAS  Google Scholar 

  • Wright M, Buttin G, Hurwitz J (1971) The isolation and characterization from Escherichia coli of an adenosine triphosphate-dependent deoxyribonuclease directed by rec B, C genes. J Biol Chem 246: 6543–6555

    Google Scholar 

  • Zieg J, Kushner SR (1977) Analysis of genetic recombination between two partially deleted lactose operons of Escherichia coli K-12. J Bacteriol 131: 123–132

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, G.R. (1990). RecBCD Enzyme. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology 4. Nucleic Acids and Molecular Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84150-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84150-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84152-1

  • Online ISBN: 978-3-642-84150-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics