Skip to main content

The Structure of the Helical Four-Way Junction in DNA, and Its Role in Genetic Recombination

  • Chapter
Nucleic Acids and Molecular Biology 4

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 4))

Abstract

Genetic recombination causes reassortment of markers on homologous chromosomes, and generates diversity that is a major force in evolution. Yet, recombination is a relatively infrequent event, and consequently difficult to study by conventional biochemical techniques, and thus most of the available information derives from genetics of bacteria, yeasts or fungi. This leaves many questions unanswered at the structural level, concerning the basic components of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behe M, Felsenfeld G (1981) Effects of methylation on a synthetic polynucleotide: The B-Z transition in poly (dG-m5C). Proc Natl Acad Sci USA 78: 1619–1623

    Article  PubMed  CAS  Google Scholar 

  • Bell L, Byers B (1979) Occurrence of crossed-strand exchange forms in yeast DNA during meiosis. Proc Natl Acad Sci USA 76: 3445–3449

    Article  PubMed  CAS  Google Scholar 

  • Bianchi ME (1988) Interaction of a protein from rat liver nuclei with cruciform DNA. EMBO J 7: 843–849

    PubMed  CAS  Google Scholar 

  • Bianchi ME, Beltrame M, Paonessa G (1989) Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243: 1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Broker TR, Lehman IR (1971) Branched DNA molecules: intermediates in T4 recombination. J Mol Biol 60: 131–149

    Article  PubMed  CAS  Google Scholar 

  • Chen J-H, Churchill MEA, Tullius TD, Kallenbach NR, Seeman NC (1988) Construction and analysis of monomobile DNA junctions. Biochemistry 27: 6032–6038

    Article  PubMed  CAS  Google Scholar 

  • Churchill MEA, Tullius TD, Kallenbach NR, Seeman NC (1988) A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sei USA 85: 4653–4656

    Article  CAS  Google Scholar 

  • Cooper JP, Hagerman PJ (1987) Gel electrophoretic analysis of the geometry of a DNA four-way junction. J Mol Biol 198: 711–719

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Cole PE (1978) Conformational changes in tRNA. In: Altman S (ed) Transfer RNA. MIT Press, Cambridge MA, pp 196–247

    Google Scholar 

  • de Massey B, Studier FW, Dorgai L, Appelbaum F, Weisberg RA (1984) Enzymes and the sites of genetic recombination: Studies with gene-3 endonuclease of phage T7 and with site-affinity mutants of phage λ. Cold Spring Harbor Symp Quant Biol 49: 715–726

    Google Scholar 

  • Diekmann S, Lilley DMJ (1987) The anomalous gel migration of a stable cruciform: temperature and salt dependence, and some comparisons with curved DNA. Nucleic Acids Res 14: 5765–5774

    Article  Google Scholar 

  • Diekmann S, Wang JC (1985) On the sequence determinants and flexibility of the kinetoplast DNA fragment with abnormal gel electrophoretic mobilities. J Mol Biol 186: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Diekmann S, von Kitzing E, McLaughlin L, Ott J, Eckstein F (1987) The influence of exocyclic substituents of purine bases on DNA curvature. Proc Natl Acad Sci USA 84: 8257–8261

    Article  PubMed  CAS  Google Scholar 

  • Diekmann S, von Kitzing E, McLaughlin L, Ott J, Eckstein F (1987) The influence of exocyclic substituents of purine bases on DNA curvature. Proc Natl Acad Sci USA 84: 8257–8261

    Google Scholar 

  • Dock AC, Lorber B, Moras D, Pixa G, Thierry JC, Giegé R (1984) Crystallisation of tRNAs. Biochimie 66: 179–201

    Article  PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AIH, Diekmann S, von Kitzing E, Kemper B, Lilley DMJ (1988) The structure of the Holliday junction, and its resolution. Cell 55: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AIH, Lilley DMJ (1990) The role of metal ions in the conformation of the Holliday junction. EMBO J 9: 583–590

    PubMed  CAS  Google Scholar 

  • Elborough KM, West SC (1988) Specific binding of cruciform DNA structures by a protein from human extracts. Nucleic Acids Res 16: 3603–3614

    Article  PubMed  CAS  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2: 55–75

    Article  Google Scholar 

  • Förster T (1951) Fluoreszenz Organischer Verbindungen. Vandenhoeck and Ruprecht, Göttingen

    Google Scholar 

  • Furlong JC, Lilley DMJ (1986) Highly selective chemical modification of cruciform loops by diethyl pyrocarbonate. Nucleic Acids Res 14: 3995–4007

    Article  PubMed  CAS  Google Scholar 

  • Furlong JC, Sullivan KM, Murchie AIH, Gough GW, Lilley DMJ (1989) Localised chemical hyper-reactivity in supercoiled DNA — evidence for base unpairing in sequences which induce C-type cruciform extrusion. Biochemistry 28: 2009–2017

    Article  PubMed  CAS  Google Scholar 

  • Geliert M, Mizuuchi K, O’Dea MH, Ohmori H, Tomizawa J (1979) DNA gyrase and DNA supercoiling. Cold Spring Harbor Symp Quant Biol 43: 35–40

    Google Scholar 

  • Gessner RV, Quigley GJ, Wang AH-J, van der Marel G, van Boom J, Rich A (1985) Structural basis for stabilisation of Z-DNA by cobalt hexammine and magnesium cations. Biochemistry 24: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Gough GW, Lilley DMJ (1985) DNA bending induced by cruciform formation. Nature 313: 154–156

    Article  PubMed  CAS  Google Scholar 

  • Gough GW, Sullivan KM, Lilley DMJ (1986) The structure of cruciforms in supercoiled DNA: probing the single-stranded character of nucleotide bases with bisulphite. EMBO J 5: 191–196

    PubMed  CAS  Google Scholar 

  • Greaves DR, Patient RK, Lilley DMJ (1985) Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. J Mol Biol 185: 461–478

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ (1985) Sequence dependence on the curvature of DNA: A test of the phasing hypothesis. Biochemistry 24: 7033–7037

    Article  PubMed  CAS  Google Scholar 

  • Hoess R, Wierzbicki A, Abremski K (1987) Isolation and characterisation of intermediates in site-specific recombination. Proc Natl Acad Sci USA 84: 6840–6844

    Article  PubMed  CAS  Google Scholar 

  • Holbrook SR, Sussman JL, Wade Warrant R, Church GM, Kim S-H (1977) RNA-ligand interactions: (I) Magnesium binding sites in yeast tRNAPhe. Nucleic Acids Res 8: 2811–2820

    Article  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5: 282–304

    Article  Google Scholar 

  • Hsu PL, Landy A (1984) Resolution of synthetic att-site Holliday structures by the integrase protein of bacteriophage λ. Nature 311: 721–726

    Article  PubMed  CAS  Google Scholar 

  • Jack A, Ladner JE, Rhodes D, Brown RS, Klug A (1977) A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol 111: 315–328

    Article  PubMed  CAS  Google Scholar 

  • Jayaram M, Crain KL, Parsons RL, Harshey RM (1988) Holliday junctions in FLP recombination: Resolution by step-arrest mutants of FLP protein. Proc Natl Acad Sei USA 85: 7902–7906

    Google Scholar 

  • Kallenbach NR, Ma R-I, Seeman NC (1983) An immobile nucleic acid junction constructed from oligonucleotides. Nature 305: 829–831

    Article  CAS  Google Scholar 

  • Kemper B, Garabett M (1981) Studies on T4 head maturation. 1. Purification and characterisation of gene-49-controlled endonuclease. Eur J Biochem 115: 123–131

    Article  PubMed  CAS  Google Scholar 

  • Kitts PA, Nash HA (1987) Homology-dependent interactions in phage λ site-specific recombination. Nature 329: 346–348

    Article  PubMed  CAS  Google Scholar 

  • Klement R, Soumpasis DM, von Kitzing E, Jovin TM (1989) Inclusion of ionic interactions in force field calculations of charged biomolecules — DNA structural transitions. Biopolymers (in press)

    Google Scholar 

  • Koo H-S, Wu H-M, Crothers DM (1986) DNA bending at adenine thymine tracts. Nature 320: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ (1980) The inverted repeat as a recognisable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci USA 77: 6468–6472

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ, Kemper B (1984) Cruciform-resolvase interactions in supercoiled DNA. Cell 36: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ, Palecek E (1984) The supercoil-stabilised cruciform of ColE1 is hyper-reactive to osmium tetroxide. EMBO J 3: 1187–1192

    PubMed  CAS  Google Scholar 

  • Manning GS (1970) The molecular theory of polyeleetrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11: 179–246

    Article  Google Scholar 

  • McClellan JA, Lilley DMJ (1987) A two-state conformational equilibrium for alternating (A-T)n sequences in negatively supercoiled DNA. J Mol Biol 197: 707–721

    Article  PubMed  CAS  Google Scholar 

  • McClellan JA, Lilley DMJ (1987) A two-state conformational equilibrium for alternating (A-T)n sequences in negatively supercoiled DNA. J Mol Biol 197: 707–721

    Article  PubMed  CAS  Google Scholar 

  • Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72: 358–361

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K, Kemper B, Hays J, Weisberg RA (1982) T4 endonuclease VII cleaves Holliday structures. Cell 29: 357–365

    Article  PubMed  CAS  Google Scholar 

  • Mueller JE, Kemper B, Cunningham RP, Kallenbach NR, Seeman NC (1988) T4 endonuclease VII cleaves the crossover strands of Holliday junction analogs. Proc Natl Acad Sci USA 85: 9441–9445

    Article  PubMed  CAS  Google Scholar 

  • Murchie AIH, Clegg RM, von Kitzing E, Duckett DR, Diekmann S, Lilley DMJ (1989) The four-way DNA junction is a right-handed cross in which the molecules are antiparallel. A fluorescence energy transfer study. Nature 341: 763–766

    Google Scholar 

  • Murchie AIH, Carter WA, Portugal J, Lilley DMJ (1990) The tertiary structure of the four-way DNA junction affords protection against DNase I cleavage. Nucleic Acids Res (in press)

    Google Scholar 

  • Naylor LH, Lilley DMJ, van de Sande H (1986) Stress-induced cruciform formation in a cloned d(CATG)10sequence. EMBO J 5: 2407–2413

    CAS  Google Scholar 

  • Nunes-Düby SE, Matsomoto L, Landy A (1987) Site-specific recombination intermediates trapped with suicide substrates. Cell 50: 779–788

    Article  PubMed  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: A model system for the study of recombination. Proc Natl Acad Sci USA 78: 6354–6358

    Google Scholar 

  • Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289: 466–477

    Article  PubMed  CAS  Google Scholar 

  • Potter H, Dressler D (1976) On the mechanism of genetic recombination: Electron microscopic observation of recombination intermediates. Proc Natl Acad Sci USA 73: 3000–3004

    Google Scholar 

  • Potter H, Dressler D (1978) In vitro system from Escherichia coli that catalyses generalized genetic recombination. Proc Natl Acad Sci USA 75: 3698–3702

    Article  PubMed  CAS  Google Scholar 

  • Quigley GJ, Teeter MM, Rich A (1978) Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci USA 75: 64–68

    Article  PubMed  CAS  Google Scholar 

  • Sigal N, Alberts B (1972) Genetic recombination: The nature of crossed strand-exchange between two homologous DNA molecules. J Mol Biol 71: 789–793

    Google Scholar 

  • Sobell HM (1972) Molecular mechanism for genetic recombination. Proc Natl Acad Sci USA 69: 2483–2487

    Article  PubMed  CAS  Google Scholar 

  • Sobell HM (1974) Concerning the stereochemistry of strand equivalence in genetic recombination. In: Grell RF (ed) Mechanisms in recombination. Plenum, New York, pp 433–438

    Google Scholar 

  • Sullivan KM, Lilley DMJ (1986) A dominant influence of flanking sequences on a local structural transition in DNA. Cell 47: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KM, Lilley DMJ (1987) The influence of cation size and charge on the extrusion of a salt-dependent cruciform. J Mol Biol 193: 397–404

    Article  PubMed  CAS  Google Scholar 

  • Symington L, Kolodner R (1985) Partial purification of an enzyme from Saccharomyces cerevisiae that cleaves Holliday junctions. Proc. Natl Acad Sci USA 82: 7247–7251

    Google Scholar 

  • Tam S-C, Williams RJP (1985) Electrostatics and biological systems. Struct Bonding 63: 103–151

    Article  CAS  Google Scholar 

  • Thompson BJ, Camien MN, Warner RC (1976) Kinetics of branch migration in double-stranded DNA. Proc Natl Acad Sci USA 73: 2299–2303

    Article  PubMed  CAS  Google Scholar 

  • Timsit Y, Westhof E, Fuchs RPP, Moras D (1989) Unusual helical packing in crystals of DNA bearing a mutation hot spot. Nature 341: 459–462

    Article  PubMed  CAS  Google Scholar 

  • Tullius TD (1989) Structural studies of DNA through cleavage by the hydroxyl radical. Nucleic Acids and Molecular Biology, 3, Springer, Berlin Heidelberg New York Tokyo, pp 1–12

    Chapter  Google Scholar 

  • Ulanovsky L, Bodner M, Trifonov EN, Choder M (1986) Curved DNA: Design, synthesis and circularisation. Proc Natl Acad Sci USA 83: 862–866

    Google Scholar 

  • von Kitzing E, Diekmann S (1987) Molecular mechanics calculation of dA12.dT12 and the curved molecule d(GCTCGAAAAA)4.d(TTTTTCGAGC)4. Eur Biophys J 15: 13–26

    Article  Google Scholar 

  • von Kitzing E, Lilley DMJ, Diekmann S (1990) Four-way junctions might be formed by DNA double helices of normal structure with only minor changes at the junction Nucleic Acids Res (in press)

    Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. Am Chem Soc 106: 765–784

    Article  CAS  Google Scholar 

  • Wemmer DE, Wand AJ, Seeman NC, Kallenbach NR (1985) NMR analysis of DNA junctions: Imino proton NMR studies of individual arms and intact junction. Biochemistry 24: 5745–5749

    Google Scholar 

  • West SC (1989) Resolution of model Holliday junctions in vitro. Nucleic Acids and Molecular Biology, 3, Springer, Berlin Heidelberg New York Tokyo, pp 44–55

    Chapter  Google Scholar 

  • West SC, Korner A (1985) Cleavage of cruciform DNA structures by an activity from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 82: 6445–6449

    Article  PubMed  CAS  Google Scholar 

  • Wu H-M, Crothers DM (1984) The locus of sequence-directed and protein induced DNA bending. Nature 308: 509–513

    Article  PubMed  CAS  Google Scholar 

  • Zimm BH, Le Bret M (1983) Counter ion condensation and system dimensionality. J Biomol Struct Dyn 1: 461–471

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lilley, D.M.J. (1990). The Structure of the Helical Four-Way Junction in DNA, and Its Role in Genetic Recombination. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology 4. Nucleic Acids and Molecular Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84150-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84150-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84152-1

  • Online ISBN: 978-3-642-84150-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics