Skip to main content

Surface Linking and Helical Repeat of Protein-Wrapped DNA

  • Chapter
Nucleic Acids and Molecular Biology 4

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 4))

Abstract

The binding of closed circular DNA to proteins involves significant alterations in both the secondary and tertiary structure of the DNA. The effects on the DNA secondary structure are often manifested by the formation of bends or kinks, as well as by changes in the helical repeat or other duplex winding parameter. The effects on the DNA tertiary structure can be either local or global in nature. For example, the tertiary structure can change locally as a consequence of wrapping of a portion of the DNA on a protein surface. More generally, global DNA tertiary structural alterations can arise as a consequence of the requirement that the linking number remain constant as long as the topological constraint is maintained. As a result, the three-dimensional configuration of the DNA axis may be significantly altered compared to a DNA that is topologically unconstrained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose C, McLaughlin R, Bina M (1987) The flexibility and topology of simian virus 40 DN A in minichromosomes. Nucleic Acids Res 15: 3703–3721

    Article  PubMed  CAS  Google Scholar 

  • Amouyal M, Buc H (1987) Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli. J Mol Biol 195: 795–808 Bauer WR, Gallo R (1989) Physical and topological properties of closed circular DNA. In: Adolph KW (ed) Chromosomes: eukaryotic, prokaryotic and viral. CRC, Boca Raton pp 87 - 126

    Google Scholar 

  • Beard P, Hughes M, Nyfeler D, Hoey M (1984) Unwinding of the DNA helix in simian virus 40 chromosome templates by RNA polymerase. Eur J Biochem 143: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Bertrand-Burggraf E, Schnarr M, Lefevre JF, Daune M (1984) Effect of superhelicity on the transcription from the tet promoter of pBR322. Abortive initiation and unwinding experiments. Nucleic Acids Res 12: 7741–7752

    Google Scholar 

  • Bliska JB, Cozzarelli NR (1987) Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J Mol Biol 194: 205–218

    Article  PubMed  CAS  Google Scholar 

  • Douc-Rasy S, Kolb A, Prunell A (1989) Protein-induced unwinding of DNA: Measurement by gel electrophoresis of complexes with DNA minicircles. Application to restriction endonuclease EcoRI, catabolite gene activator protein and lac repressor. Nucleic Acids Res 17: 5173–5189

    Google Scholar 

  • Finch JT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M, Klug A (1977) Structure of nucleosome core particles of chromatin. Nature 269: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Finch JT, Brown RS, Rhodes D, Richmond T, Rushton B, Lutter LC, Klug A (1981) X-ray diffraction study of a new crystal form of the nucleosome core showing higher resolution. J Mol Biol 145: 757–769

    Article  PubMed  CAS  Google Scholar 

  • Gamper HB, Hearst JE (1982) A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell 29: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Garner MM, Felsenfeld G, O’Dea MH, Gellert M (1987) Effects of DNA supercoiling on the topological properties of nucleosomes. Proc Natl Acad Sci USA 84: 2620–2623

    Article  PubMed  CAS  Google Scholar 

  • Hanas JS, Bogenhagen DF, Wu C-W (1984) DNA unwinding ability of Xenopus transcription factor A. Nucleic Acids Res 12: 1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Klug A, Lutter LC (1981) The helical periodicity of DNA on the nucleosome. Nucleic Acids Res 17: 4267–4283

    Article  Google Scholar 

  • Klug A, Lutter LC, Rhodes D (1983) Helical periodicity of DNA on and off the nucleosome as probed by nucleases. Cold Spring Harbor Symp Quant Biol 47: 285–292

    PubMed  Google Scholar 

  • Kolb A, Buc H (1982) Is DNA unwound by the cyclic AMP receptor protein? Nucleic Acids Res 10: 473–485

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Wang JC (1978) Micrococcus luteus DNA gyrase: active components and a model for its supercoiling of DNA. Proc Natl Acad Sci USA 75: 2098–2102

    Article  PubMed  CAS  Google Scholar 

  • Lutter LC (1979) Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Res 6: 41–56

    Article  PubMed  CAS  Google Scholar 

  • Morse RH, Cantor CR (1985) Nucleosome core particles suppress the thermal untwisting of core DNA and adjacent linker DNA. Proc Natl Acad Sci USA 82: 4653–4657

    Article  PubMed  CAS  Google Scholar 

  • Morse RH, Cantor CR (1986) Effect of trypsinization and histone H5 addition on DNA twist and topology in reconstituted minichromosomes. Nucleic Acids Res 14: 3293–3310

    Article  PubMed  CAS  Google Scholar 

  • Morse RH, Pederson DS, Dean A, Simpson RT (1987) Yeast nucleosomes allow thermal untwisting of DNA. Nucleic Acids Res 15: 10311–10330

    Article  PubMed  CAS  Google Scholar 

  • Peck LJ, Wang JC (1981) Sequence dependence of the helical repeat of DNA in solution. Nature 292: 375–378

    Article  PubMed  CAS  Google Scholar 

  • Reynolds WF, Gottesfeld JM (1983) 5S RNA gene transcription factor IIIA alters the helical configuration of DNA. Proc Natl Acad Sci USA 80: 1862–1866

    Article  PubMed  Google Scholar 

  • Rhodes D, Klug A (1980) Helical periodicity of DNA determined by enzyme digestion. Nature 287: 573–578

    Article  Google Scholar 

  • Richards FM (1977) Areas, volumes, packing and protein structure. Ann Rev Biophys Bioeng 6: 151–176

    Article  CAS  Google Scholar 

  • Richardson SM, Boles TC, Cozzarelli NR (1988) The helical repeat of underwound DNA in solution. Nucleic Acids Res 16: 6607–6616

    Article  PubMed  CAS  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 A resolution. Nature 311: 532–537

    Article  PubMed  CAS  Google Scholar 

  • Saucier JM, Wang JC (1972) Angular alteration of the DNA helix by E. coli RNA polymerase. Nature [New Biol] 239: 167–170

    Article  CAS  Google Scholar 

  • Shastry BS (1986) 5S RNA gene specific transcription factor (TFIIIA) changes the linking number of the DNA. Biochem Biophys Res Commun 134: 1086–1092

    Article  PubMed  CAS  Google Scholar 

  • Shure M, Vinograd J (1976) The number of superhelical turns in native virion SV40 DNA and minicol DNA determined by the band counting method. Cell 8: 215–226

    Article  PubMed  CAS  Google Scholar 

  • Sinden RR, Pettijohn DE (1981) Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc Natl Acad Sci USA 78: 224–228

    Article  PubMed  CAS  Google Scholar 

  • Sinden RR, Pettijohn DE (1982) Torsional tension in intracellular bacteriophage T4 DNA. Evidence that a linear DNA duplex can be supercoiled in vivo. J Mol Biol 162: 659–677

    Google Scholar 

  • Sogo JM, Stahl H, Koller T, Knippers R (1986) Structure of replicating simian virus 40 mini-chromosomes: The replication fork, core hisone segregation and terminal structures. J Mol Biol 189: 189–204

    Google Scholar 

  • Spengler SJ, Stasiak A, Cozzarelli NR (1985) The stereostructure of knots and catenanes produced by phage lambda integrative recombination: implications for mechanism and DNA structure. Cell 42: 325–334

    Article  PubMed  CAS  Google Scholar 

  • Uberbacher EC, Bunick GJ (1985) X-ray structure of the nucleosome core particle. J Biomol Struct Dyn 2: 1033–1055

    PubMed  CAS  Google Scholar 

  • Wang JC (1969) Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic lambda DNA. J Mol Biol 43: 25–39

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci USA 76: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Wang JC, Barkley MD, Bourgeois S (1974) Measurements of unwinding of lac operator by repressor. Nature 251: 247–249

    Article  PubMed  CAS  Google Scholar 

  • Wang JC, Jacobsen JH, Saucier JM (1977) Physiochemical studies on interactions between DNA and RNA polymerase. Unwinding of the DNA helix by Escherichia coli RNA polymerase. Nucleic Acids Res 4: 1225–1241

    Article  PubMed  CAS  Google Scholar 

  • Wasserman SA, White JH, Cozzarelli NR (1988) The helical repeat of double-stranded DNA varies as a function of catenation and supercoiling. Nature 334: 448–450

    Article  PubMed  CAS  Google Scholar 

  • White JH (1969) Self-linking and the Gauss integral in higher dimensions. Am J Math 91: 693–728

    Article  Google Scholar 

  • White JH (1989) An introduction to the geometry and topology of DNA structure. In: Waterman MS (ed) Mathematical methods for DNA sequences. CRC, Boca Raton, pp 225–253

    Google Scholar 

  • White JH, Bauer WR (1986) Calculation of the twist and the writhe for representative models of DNA. J Mol Biol 189: 329–341

    Article  PubMed  CAS  Google Scholar 

  • White JH, Bauer WR (1988) Applications of the twist difference to DNA structural analysis. Proc Natl Acad Sci USA 85: 772–776

    Article  PubMed  CAS  Google Scholar 

  • White JH, Cozzarelli NR, Bauer WR (1988) Helical repeat and linking number of surface wrapped DNA. Science 241: 323–327

    Article  PubMed  CAS  Google Scholar 

  • White JH, Gallo R, Bauer WR (1989a) Dependence of the linking deficiency of supercoiled minichromosomes upon nucleosome distortion. Nucleic Acids Res 17: 5827–5835

    Article  PubMed  CAS  Google Scholar 

  • White JH, Gallo RC, Bauer WR (1989b) Effect of nucleosome distortion on the linking deficiency in relaxed minichromosomes. J Mol Biol 207: 193–199

    Article  PubMed  CAS  Google Scholar 

  • Whitson PA, Hsieh WT, Wells RD, Matthews KS (1987) Supercoiling facilitates lac operator-repressor-pseudooperator interactions. J Biol Chem 262: 4943–4946

    PubMed  CAS  Google Scholar 

  • Winston S, Pettijohn DE (1988) Relaxation of DNA torsional tension in defined domains of bacterial chromosomes in vitro. Can J Microbiol 34: 522–525

    Article  PubMed  CAS  Google Scholar 

  • Wong M-L, Hsu M-T (1989) Linear adenovirus DNA is organized into supercoiled domains in virus particles. Nucleic Acids Res 17: 3535–3550

    Article  PubMed  CAS  Google Scholar 

  • Worcel A, Burgi E (1972) On the structure of the folded chromosome of Escherichia coli. J Mol Biol 71: 127–147

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, W.R., White, J.H. (1990). Surface Linking and Helical Repeat of Protein-Wrapped DNA. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology 4. Nucleic Acids and Molecular Biology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84150-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84150-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84152-1

  • Online ISBN: 978-3-642-84150-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics