RNA Folding

  • I. TinocoJr.
  • J. D. Puglisi
  • J. R. Wyatt
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 4)


The biological function of RNA determines its structure. Here we will review the structural elements that are known, or that have been proposed, to explain the biological functions. The emphasis will be on the conformations of the structural elements that make up folded RNA, and on their thermodynamic stability relative to the unfolded single strand.


Internal Loop Hairpin Loop Anticodon Loop Tertiary Interaction Pseudoknot Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboul-ela F, Koh D, Tinoco I Jr, Martin F (1985) Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X,Y = A,C,G,T). Nucleic Acids Res 13: 4811–4824PubMedCrossRefGoogle Scholar
  2. Arnott S, Bond PJ (1973) Structures for poly(U)-poly(A)-poly(U) triple stranded polynucleotides. Nat New Biol 244: 99–101PubMedCrossRefGoogle Scholar
  3. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55: 1089–1098PubMedCrossRefGoogle Scholar
  4. Bhattacharyya A, Murchie AIH, Lilley DMJ (1990) RNA bulges and the helical periodicity of double stranded RNA. Nature 343: 484–485PubMedCrossRefGoogle Scholar
  5. Brierley I, Digard P, Inglis SC (1989) Characterization of-an efficient coronavirus frameshifting signal: requirement for an RNA pseudoknot. Cell 57: 537–547PubMedCrossRefGoogle Scholar
  6. Broitman SL, Im DD, Fresco JR (1987) Formation of the triple-stranded polynucleotide helix, poly ( A∙A∙U ). Proc Natl Acad Sci USA 84: 5120–5124PubMedCrossRefGoogle Scholar
  7. Chou S-H, Flynn P, Reid B (1989) Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers: r(CGCGAAUUCGCG) and r(CGCGUAUACGCG). Biochemistry 28: 2422–2435PubMedCrossRefGoogle Scholar
  8. Christiansen J, Brown RS, Sproat BS, Garrett RA (1987) Xenopus transcription factor IIIA binds primarily at junctions between helical stems and internal loops in oocyte 5S RNA. EMBO J 6: 453–460PubMedGoogle Scholar
  9. Cole PE, Yang SK, Crothers DM (1972) Conformational changes of transfer ribonucleic acid. Equilibrium phase diagram. Biochemistry 11: 4358–4368PubMedCrossRefGoogle Scholar
  10. Crothers DM, Cole PE, Hilbers CW, Schulman RG (1974) The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol 87: 63–88PubMedCrossRefGoogle Scholar
  11. Davis PW, Adamiak RW, Tinoco I Jr (1990) Z-RNA: The solution NMR structure of r(CGCGCG). Biopolymers 29: 109–121PubMedCrossRefGoogle Scholar
  12. Dock-Bregeon AC, Chevrier B, Podjarny A, Moras D, deBear JS, Gough GR, Gilham PT, Johnson JE (1988) High resolution structure of the RNA duplex [U(U-A)6A]2. Nature 335: 375–378PubMedCrossRefGoogle Scholar
  13. Eisinger J, Feuer B, Yamane T (1971) Codon-anticodon binding in tRNAphe. Nat New Biol 231: 126–128PubMedCrossRefGoogle Scholar
  14. Florentz C, Giege R (1986) Contact areas of the turnip yellow mosaic virus tRNA-like structure interacting with yeast valyl-tRNA synthetase. J Mol Biol 191: 117–130PubMedCrossRefGoogle Scholar
  15. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sei USA 83: 9373–9377CrossRefGoogle Scholar
  16. Gewirth DT (1988) New approaches to structural studies of E. coli 5S RNA and its complexes with ribosomal proteins by NMR. Ph.D. Thesis, Yale UniversityGoogle Scholar
  17. Gralla J, Crothers DM (1973) Free energy of imperfect nucleic acid helices III. Small internal loops resulting from mismatches. J Mol Biol 78: 301–319PubMedCrossRefGoogle Scholar
  18. Groebe DR, Uhlenbeck OC (1988) Characterization of RNA hairpin loop stability. Nucleic Acids Res 16: 11725–11735PubMedCrossRefGoogle Scholar
  19. Groebe DR, Uhlenbeck OC (1989) Thermal stability of RNA hairpins containing a four-membered loop and a bulge nucleotide. Biochemistry 28: 742–747PubMedCrossRefGoogle Scholar
  20. Grosjean H, Söll D, Crothers DM (1976) Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. J Mol Biol 103: 499–519PubMedCrossRefGoogle Scholar
  21. Guteil RG, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32: 155–216CrossRefGoogle Scholar
  22. Holbrook SR, Sussman JL, Warrant RW, Church GM, Kim S-H (1977) RNA ligand interactions: (I) Magnesium binding sites in yeast tRNAphe. Nucleic Acids Res 4: 2811–2820PubMedCrossRefGoogle Scholar
  23. Holbrook SR, Sussman JL, Warrant RW, Kim S-H (1978) Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol 123: 631–660PubMedCrossRefGoogle Scholar
  24. Hou Y-M, Schimmel P (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333: 140–145PubMedCrossRefGoogle Scholar
  25. Huang WM, Ao S-Z, Casjeans S, Orlandi R, Zeikus R, Weiss R, Winge D, Fang M (1988) A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239: 1005–1012PubMedCrossRefGoogle Scholar
  26. Hutchins CJ, Rathjen PD, Forster AC, Symons RH (1986) Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 14: 3627–3640PubMedCrossRefGoogle Scholar
  27. Jack A, Ladner JE, Rhodes D, Brown RS, Klug A (1977) A crystallographie study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol 111: 315–328PubMedCrossRefGoogle Scholar
  28. James BD, Olsen GJ, Liu J, Pace NR (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52: 19–26PubMedCrossRefGoogle Scholar
  29. Keese P, Symons RH (1985) Domains in viroids: Evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sei USA 82: 4582–4586CrossRefGoogle Scholar
  30. Kim S-H, Cech TR (1987) Three-dimensional model of the active site of the self-splicing rRNA precursor of Tetrahymena. Proc Natl Acad Sei USA 84: 8788–8792CrossRefGoogle Scholar
  31. Labuda D, Pörschke D (1980) Multistep mechanism of codon recognition by transfer ribonucleic acid. Biochemistry 19: 3799–3805PubMedCrossRefGoogle Scholar
  32. Letai AG, Palldino MA, Fromm E, Rizzo V, Fresco JR (1988) Specificity in formation of triple-stranded nucleic acid helical complexes: Studies with agarose-linked polyribonucleotide affinity columns. Biochemistry 27: 9108–9112PubMedCrossRefGoogle Scholar
  33. Martin FH, Castro MM, Aboul-ela F, Tinoco I Jr (1985) Base pairing involving deoxyinosine: implications for probe design. Nucleic Acid Res 13: 8927–8938PubMedCrossRefGoogle Scholar
  34. Massoulié J (1968) Thermodynamique des associations de poly A et poly U en milieu neutre et alcalin. Eur J Biochem 3: 428–438PubMedCrossRefGoogle Scholar
  35. McClain WH, Chen Y-M, Foss K, Schneider J (1988) Association of transfer RNA acceptor identity with a helical irregularity. Science 242: 1681–1684PubMedCrossRefGoogle Scholar
  36. McPheeters DS, Stormo GD, Gold L (1988) Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J Mol Biol 201: 517–535PubMedCrossRefGoogle Scholar
  37. Moazed D, Stern S, Noller HF (1986) Rapid chemical probing of conformation in 16S ribo- somal RNA and 30S ribosomal subunits using primer extension. J Mol Biol 187: 399–416PubMedCrossRefGoogle Scholar
  38. Nussinov R, Jacobson A (1980) Fast algorithm for predicting the secondary structure of single stranded RNA. Proc Natl Acad Sci 77: 6309–6313PubMedCrossRefGoogle Scholar
  39. Peattie DA, Douthwaite S, Garrett RA, Noller HF (1981) A “bulged” double helix in a RNA-protein contact site. Proc Natl Acad Sei USA 78: 7331–7335CrossRefGoogle Scholar
  40. Pleij CWA, Rietveld K, Bosch L (1985) A new principle of RNA folding based on pseudo-knotting. Nucleic Acids Res 13: 1717–1731PubMedCrossRefGoogle Scholar
  41. Privalov PL, Filimonov W (1978) Thermodynamic analysis of transfer RNA unfolding. J Mol Biol 122: 447–464PubMedCrossRefGoogle Scholar
  42. Puglisi JD (1989) RNA folding: structure and conformational equilibria of RNA pseudoknots. Ph.D. Thesis, University of California, BerkeleyGoogle Scholar
  43. Puglisi JD, Wyatt JR, Tinoco I Jr (1988) A pseudoknotted RNA oligonucleotide. Nature 321: 283–286CrossRefGoogle Scholar
  44. Riesner D, Römer R (1971) Thermodynamics and kinetics of conformational transitions in oligonucleotides and tRNA. In: Duchesne J (ed) Physico-chemical properties of nucleic acids. Academic Press, New York, pp 237–318Google Scholar
  45. Riesner D, Maass G, Thiebe R, Philippsen P, Zachau HG (1973) Conformational transitions in yeast tRNAPhe as studied with tRNA fragments. Eur J Biochem 36: 76–88PubMedCrossRefGoogle Scholar
  46. Rietveld K, van Poelgeest R, Pleij CWA, van Boom JH, Bosch L (1982) The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res 10: 1929–1946PubMedCrossRefGoogle Scholar
  47. Romby P, Westhof E, Toukifimpa R, Mache R, Ebel J-P, Ehresmann C, Ehresmann B (1988) Higher order structure of chloroplastic 5S ribosomal RNA from spinach. Biochemistry 27: 4721–4730PubMedCrossRefGoogle Scholar
  48. Saenger W (1984) Principles of nucleic acid structure. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  49. Sampson JR, DiRenzo AB, Behlen LS, Uhlenbeck OC (1989) Nucleotides in yeast tRNAPhe required for the specific recognition by its cognate synthetase. Science 243: 1363–1366PubMedCrossRefGoogle Scholar
  50. Schimmel P (1989) RNA pseudoknots that interact with components of the translation apparatus. Cell 58: 9–12PubMedCrossRefGoogle Scholar
  51. Stahl DA, Walker TA, Meyhack B, Pace NR (1979) Precursor-specific nucleotide sequences can govern RNA folding. Cell 18: 1133–1143PubMedCrossRefGoogle Scholar
  52. Stern S, Weiser B, Noller HF (1988) Model for the three-dimensional folding of 16S ribosomal RNA. J Mol Biol 204: 447–481PubMedCrossRefGoogle Scholar
  53. Studnicka GM, Rahn GM, Cummings IW, Salzer WA (1978) Computer method for predicting the secondary structure of single-stranded RNA. Nucleic Acids Res 5: 3365–3387PubMedCrossRefGoogle Scholar
  54. Sugimoto N, Kierzek R, Freier SM, Turner DH (1986) Energetics of internal GU mismatches in ribooligonucleotide helixes. Biochemistry 25: 5755–5759PubMedCrossRefGoogle Scholar
  55. Tang CK, Draper DE (1989) Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell 57: 531–536PubMedCrossRefGoogle Scholar
  56. Thiele D, Guschlbauer W (1971) Protonated polynucleotide structures. IX. Disproportionation of poly(G)-poly(C) in acid medium. Biopolymers 10: 143–157PubMedCrossRefGoogle Scholar
  57. Tuerk C, Gauss P, Thermes C, Groebe DR, Guild N, Stormo G, Gayle M, d’Auberton-Carafa Y, Uhlenbeck OC, Tinoco I Jr, Brody EN, Gold L (1988) CUUCGG hairpins: extraordinarily stable RNA secondary structure associated with various biochemical processes. Proc Natl Acad Sei USA 85: 1364–1368CrossRefGoogle Scholar
  58. Turner DH, Sugimoto N, Freier SM (1988) RNA structure prediction. Annu Rev Biophys Biophys Chem 17: 167–192PubMedCrossRefGoogle Scholar
  59. Uhlenbeck OC (1972) Complementary oligonucleotide binding to transfer RNA. J Mol Biol 65: 25–41PubMedCrossRefGoogle Scholar
  60. Uhlenbeck OC (1987) A small catalytic oligoribonucleotide. Nature 328: 596 - 600PubMedCrossRefGoogle Scholar
  61. van den Hoogen YT, van Beuzekom AA, de Vroom E, van der Marel G, van Boom JH, Altona C (1988) Bulge-out structures in the single-stranded trimer AUA and in the duplex (CUGGUGCGG)∙(CCGCCCAG). A model-building and NMR study. Nucleic Acids Res 16: 5013–5030PubMedCrossRefGoogle Scholar
  62. van de Sande JH, Ramsing NB, Germann MW, Elhorst W, Kalisch BW, v Kitzing E, Pon RT, Clegg RC, Jovin TM (1988) Parallel stranded DNA. Science 241: 551–557PubMedCrossRefGoogle Scholar
  63. Varani G, Wimberly B, Tinoco I Jr (1989) Conformation and dynamics of an RNA internal loop. Biochemistry 28: 7760–7772PubMedCrossRefGoogle Scholar
  64. Waring RB, Davies RW (1984) Assessment of a model for intron secondary structure relevant to RNA self-splicing—a review. Gene 28: 277–291PubMedCrossRefGoogle Scholar
  65. Wells RD, Collier DA, Hanvey JC, Shimuzu M, Wohlrab F (1988) The chemistry and biology of unusual DNA structures adopted by oligopurine-oligopyrimidine sequences. FASEB J 2: 2939–2949PubMedGoogle Scholar
  66. White SA, Draper DE (1987) Effects of single-base bulges on intercalator binding to small RNA and DNA hairpins and a ribosomal RNA fragment. Biochemistry 28: 1892–1897CrossRefGoogle Scholar
  67. Williams AL Jr, Tinoco I Jr (1986) A dynamic programming algorithm for finding alternative RNA secondary structures. Nucleic Acids Res 14: 299–315PubMedCrossRefGoogle Scholar
  68. Woodson SA, Crothers DM (1989) Conformation of a bulge-containing oligomer from a hot-spot sequence by NMR and energy minimization. Biopolymers 28: 1149–1177PubMedCrossRefGoogle Scholar
  69. Wu H-N, Uhlenbeck OC (1987) Role of a bulged A residue in a specific RNA protein interaction. Biochemistry 26: 8221–8227PubMedCrossRefGoogle Scholar
  70. Wyatt JR (1990) RNA pseudoknots: effect of loop sequence and size on conformational equilibria. Ph.D. Thesis, University of California, BerkeleyGoogle Scholar
  71. Wyatt JR, Puglisi JD, Tinoco I Jr (1989) Pseudoknotted RNA oligonucleotides. In: Cech T (ed) Molecular biology of RNA. Alan R Liss, New York, pp 25–32Google Scholar
  72. Zarling DA, Calhoun CJ, Hardin CC, Zarling AH (1987) Cytoplasmic Z-RNA. Proc Natl Acad Sci 84: 6117–6121PubMedCrossRefGoogle Scholar
  73. Zimmerman SB, Cohen GS, Davies DR (1975) X-ray fiber diffraction and model-building study of polyguanylie acid and polyinosinic acid. J Mol Biol 92: 181–192PubMedCrossRefGoogle Scholar
  74. Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244: 48–52PubMedCrossRefGoogle Scholar
  75. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermo-dynamics and auxiliary information. Nucleic Acids Res 9: 133–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • I. TinocoJr.
  • J. D. Puglisi
  • J. R. Wyatt
    • 1
  1. 1.Department of Chemistry and Laboratory of Chemical BiodynamicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations