A Series of New Exact Solutions to the Nonlinear Equation \({y_t} + {y_{xxx}} - 6{y^2}{y_x} + 6\lambda {y_x} = 0\)

Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

Following the Bäcklund transformation and using the theorems proved by the same authors, previously we obtained sets of new solutions to the KdV equation and the nonlinear equation \({y_t} + {y_{xxx}} - 6{y^2}{y_x} + 6\lambda {y_x} = 0\) which transforms into the modified KdV equation when λ = 0. In this paper we present another new series of solutions to the above nonlinear equation.

Keywords

Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.D. Walhquist and F.B. Estabrook, J. Math. Phys. 16, 1 (1975).Google Scholar
  2. 2.
    C. Au and P.C.W. Fung, Phys. Rev. B 25, 6460 (1982).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    P.C.W. Fung and C. Au, Phys. Rev. B 26, 4035 (1982).Google Scholar
  4. 4.
    C. Au and P.C.W. Fung, J. Math. Phys. 25, 1364 (1984).Google Scholar
  5. 5.
    P.C.W. Fung and C. Au, J. Phys. A 16, 1611 (1983).MathSciNetGoogle Scholar
  6. 6.
    C. Au and P.C.W. Fung, Phys. Rev.,B 30, 1797 (1984).MathSciNetGoogle Scholar
  7. 7.
    R.M. Miura, J. Math Phys. 9, 1902 (1968).Google Scholar
  8. 8.
    R.M. Miura,“Solitons in Action”, ed. K. Lonngren and A. Scott, Academic Press, New York. (1978)Google Scholar
  9. 9.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett, 19, 1095 (1967).CrossRefMATHADSGoogle Scholar
  10. 10.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Commun. Pure Appl. Math. 27, 91 (1974).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • Chi Au
    • 1
  1. 1.Department of Mathematical StudiesHong Kong PolytechnicHong KongChina

Personalised recommendations