Complex Singularities and the Riemann Surface for the Burgers Equation

  • D. Bessis
  • J. D. Fournier
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


The analytic structure of the solution of the Burgers equations is analysed: the viscous solution has an infinite number of complex poles. When the viscosity tends to zero, these poles condense, producing the inviscid singularities. A Riemann surface is attached to those non polar singularities. As a consequence, a shock appears to be the permutation of two Riemann sheets. This phenomenon can also be understood as a phase transition in a Curie-Weiss model.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Bessis and J.D. Fourier, J.Phys.Let. 45, L833–841 (1984)CrossRefGoogle Scholar
  2. [2]
    C.M. Newman, private communicationsGoogle Scholar
  3. [3]
    J.A. Burgers, A.K. Verhaud-Kon, Nederl. Weterschappen Afd. Natuurkunde, Eerste Sertie, Vol. 17 (1939) p. 1–5Google Scholar
  4. J.M. Burgers, “The Non-linear Diffusion equation” D. Reidel Publ. (1974)Google Scholar
  5. [4]
    C.M. Newman, Schock waves and linear field bound, Talk given at Rutgers Statistical Mechanic Meeting, Dec. 1981.Google Scholar
  6. [5]
    J.D. Fournier and U. Frisch, J.Mec.Th.Appl. 2 (1983) n°5, 689MathSciNetGoogle Scholar
  7. [6]
    D.V. Choodnovsky and G.V. Choodnovsky, “Pole expansions of Non-linear Partial Differential equations” Nuovo Cimento 40B, n°2, p. 339–353 (1977)CrossRefMathSciNetGoogle Scholar
  8. [7]
    J. Weiss, M. Tabor, G. Carnevale, “The Painlevé Property for Partial Differential Equations”, J.Math.Phys. 24, (3) p. 522–526 (1983)CrossRefMATHADSMathSciNetGoogle Scholar
  9. [8]
    E. Hopf, Comm.Pure Appl.Mech. 3, 201 (1950).CrossRefMATHMathSciNetGoogle Scholar
  10. J.D. Cole, Quart. Appl.Math. 9, 225 (1951)MATHMathSciNetGoogle Scholar
  11. [9]
    G. Polya, Uber trigonometische Integrale mit nur reellen Nullstelleir, Z. Reine Angew. Math. 158, 6–18, 1927CrossRefMATHGoogle Scholar
  12. [10]
    M.J. Ablowitz and H. Segur, Solitons and the inverse scattering transforms, Siam 1981Google Scholar
  13. [11]
    T.D. Lee and C.N. Yang, Phys.Rev. 87, 410 (1952).CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • D. Bessis
    • 1
  • J. D. Fournier
    • 2
  1. 1.Service de Physique Théorique de SaclayLaboratoire de l’Institut de Recherche Fondamentale du Commissariat à l’Energie AtomiqueGif-sur-Yvette CedexFrance
  2. 2.ObservatoireMont-GrosNice CedexFrance

Personalised recommendations