Advertisement

Some Ideas on Nonlinear Evolution Equations

  • F. Calogero
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

This is a terse review of some ideas and recent results helpful to understand nonlinear evolution equations. The discussion is mainly limited to problems in 1+1 dimensions.

Keywords

Inverse Problem Nonlinear Evolution Burger Equation Dispersive Wave Nonlinear Evolution Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    F. Calogero and W. Eckhaus: “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I & II”. Inverse Problems 3, 229–262 (1987) & 4, 11–33 (1988).Google Scholar
  2. (2).
    F. Calogero: “The evolution PDE ut, = uxxx + 3 (uxx u2 + 3 ux2 u) + 3 ux u4 ”. J. Math. Phys. 28, 538–555 (1987).Google Scholar
  3. (3).
    F. Calogero and S. De Lillo: “The Eckhaus PDE i psit + psixx + 2 (\psi\2)x psi \psi\4 psi = 0 ”. Inverse Problems 3, 633–681 (1987).Google Scholar
  4. (4).
    F. Calogero and S. De Lillo: “Cauchy problem on the semiline and on a finite interval for the Eckhaus equation”. Inverse Problems 4, L33 - L37 (1988).Google Scholar
  5. (5).
    F. Calogero and S. De Lillo: “The Burgers equation on the semi-infinite and finite intervals”. Nonlinearity 2, 37–43 (1989).Google Scholar
  6. (6).
    F. Calogero and S. De Lillo: (to be published).Google Scholar
  7. (7).
    Galileo Galilei: j1 Saggiatgre, 1623. CSee: Opere di Galileo Galilei, Edizione nazionale, Barbera, Firenze, 1890–1909, vol. VI, p. 2327.Google Scholar
  8. (8).
    F. Calogero: “Why are certain nonlinear PDEs both widely applicable and integrable?”. Rome preprint n. 582, January 1988. To be published in: V. E. Zakharov (editor): Wheat is integrability (for nonlinear PDEs)?, Springer, 1989 (in press).Google Scholar
  9. (9).
    F. Calogero and W. Eckhaus: “Necessary conditions for integrability of nonlinear PDEs”. Inverse Problems 3, L27 - L32 (1987).Google Scholar
  10. (10).
    F. Calogero and A. Maccari: “Equations of nonlinear Schroedinger type in 1+1 and 2+1 dimensions, obtained from integrable PDEs”. In: P. C. Sabatier (editor): Inverse Problems: an Interdisciplinary Study (Proceedings of the meeting on Inverse Problems held in Montpellier, November 1986), Advances in Electronics and Electron Physics, 19, Academic Press, London & New York, 1987, pp. 463–480.Google Scholar
  11. (11).
    F. Calogero: “Universality and integrability of the nonlinear PDEs describing N-wave interactions”. J. Math. Phys. 30, 28–40 (1989).Google Scholar
  12. (12).
    F. Calogero: “Solutions of certain integrable nonlinear evolution PDEs describing nonresonant N-wave interactions”. J. Math Phys. (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • F. Calogero
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Sezione di RomaIstituto Nazionale di Fisica NucleareItaly

Personalised recommendations