Link Polynomials and Exactly Solvable Models

  • M. Wadati
  • Y. Akutsu
  • T. Deguchi
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

Link polynomial, topological invariant for knots and links, is constructed from an exactly solvable model in statistical mechanics. A general theory consists of two steps. First, representation of the braid group is made from the Boltzmann weights of the exactly solvable model. Second, Markov trace is defined on the braid group representation. Sufficient conditions for the existence of the Markov trace are explicitly given. The knot theory based on exactly solvable models also includes braid-monoid algebra, graphical approach and two-variable extension of link polynomials. In addition, application of the theory to graph-state models is presented.

Keywords

Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.S. Birman: Braids, Links and Mapping Class Groups (Princeton University Press, 1974 ).Google Scholar
  2. [2]
    L.H. Kauffman: On Knots (Princeton University Press, 1987).Google Scholar
  3. [3]
    M. Wadati and Y. Akutsu: Prog. Theor. Phys. Suppl. 94 (1988) 1.CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    Y. Akutsu, T. Deguchi and M. Wadati: in Braid Group, Knot Theory and Statistical Mechanics, ed. C.N. Yang and M.L. Ge (World Scientific Pub., 1989 ).Google Scholar
  5. [5]
    M. Wadati, T. Deguchi and Y. Akutsu: Phys. Reports (in press).Google Scholar
  6. [6]
    T. Deguchi, M. Wadati and Y. Akutsu: Adv. Stud. in pure Math. 19 (1989), Kinokuniya-Academic Press.Google Scholar
  7. [7]
    M. Wadati, T. Deguchi and Y. Akutsu: in Nonlinear Evolution Equations, Integrability and Spectral Methods, ed. A. Fordy (Manchester University Press, 1989 ).Google Scholar
  8. [8]
    C.N. Yang: Phys. Rev. Lett. 19 (1967) 1312.Google Scholar
  9. [9]
    R.J. Baxter: Ann. of Phys. 70 (1972) 323.CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    M. Karowski, H.J. Thun, T.T. Truong and P.H. Weisz: Phys. Lett. 67B (1977) 321.CrossRefGoogle Scholar
  11. K. Sogo, M. Uchinami, Y. Akutsu and M. Wadati: Prog. Theor. Phys. 68 (1982) 508.CrossRefMATHADSMathSciNetGoogle Scholar
  12. [11]
    R.J. Baxter: Exactly Solved Models in Statistical Mechanics (Academic Press,1982) Google Scholar
  13. [12]
    Y. Akutsu and M. Wadati: J. Phys. Soc.Google Scholar
  14. ] Y. Akutsu and M. Wadati: J. Phys. Soc.Google Scholar
  15. [14]
    Y. Akutsu, T. Deguchi and M. Wadati: J. Phys. Soc. Jpn. 56 (1987) 3464.CrossRefMATHADSMathSciNetGoogle Scholar
  16. [15]
    Y. Akutsu, T. Deguchi and M. Wadati: J. Phys. Soc. Jpn. 57 (1988) 1173.Google Scholar
  17. [16]
    T. Deguchi, M. Wadati and Y. Akutsu: J. Phys. Soc. Jpn. 57 (1988) 1905.Google Scholar
  18. [17]
    T. Deguchi, M. Wadati and Y. Akutsu: J. Phys. Soc. Jpn. 57 (1988) 2921.Google Scholar
  19. [18]
    V.F.R. Jones: Bull. Amer. Math. Soc. 12 (1985) 103.CrossRefMATHMathSciNetGoogle Scholar
  20. [19]
    P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett and A. Ocneanu: Bull. Amer. Math. Soc. 12 (1985) 239.CrossRefMATHMathSciNetGoogle Scholar
  21. [20]
    J.H. Przytycki and K.P. Traczyk: Kobe J. Math. 4 (1987) 115.MATHMathSciNetGoogle Scholar
  22. [21]
    L. Kauffman: Topology 26 (1987) 395.CrossRefMATHMathSciNetGoogle Scholar
  23. [22]
    V.G. Turaev: Invent. Math. 92 (1988) 527.CrossRefMATHADSMathSciNetGoogle Scholar
  24. [23]
    J.S. Birman and H. Wenzl: Trans. Amer. Math. Soc. (to appear).Google Scholar
  25. [24]
    J. Murakami: Osaka J. Math. 24 (1987) 745.MATHMathSciNetGoogle Scholar
  26. [25]
    L.H. Kauffman: Statistical Mechanics and the Jones Polynomial, preprint (to appear in Proceedings of 1986 Santa Cruz Conference on the Artin Braid Group )Google Scholar
  27. [26]
    Y. Akutsu and M. Wadati: Commun. Math. Phys. 117 (1988) 243.CrossRefMATHADSMathSciNetGoogle Scholar
  28. [27]
    T. Deguchi, Y. Akutsu and M. Wadati: J. Phys. Soc. Jpn. 57 (1988) 757.CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • M. Wadati
    • 1
  • Y. Akutsu
    • 2
  • T. Deguchi
    • 1
  1. 1.Institute of Physics, College of Arts and SciencesUniversity of TokyoMeguro-ku, Tokyo 153Japan
  2. 2.Institute of PhysicsKanagawa UniversityRokkakubashi, Kanagawa-ku, Yokohama 221Japan

Personalised recommendations