ESD of Multiply Charged Ions from SiO2: A Search for Mechanisms

  • R. A. Baragiola
  • T. E. Madey
  • A.-M. Lanzillotto
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 19)


We report ESD of singly- and multiply-charged substrate species (Si+, Si2+, Si3+, O+, O2+, and SiO+) and adsorbed species (H+ and F+) from thermally grown SiO2 and from quartz. We have measured ion yields Y(E) and energy distribution curves (EDCs) for electron energies E between 100 and 5000 eV. Y(E) curves have onsets related to the Si2p and O1s thresholds, but do not follow core ionization cross sections. EDCs of Si ions are a few eV wide, while those of O+ and H+ have tails extending to >25 eV. The results suggest ESD is initiated by Auger decay from a core hole in the presence of additional electronic excitations.


Electron Beam Current Core Hole Auger Decay Core Excitation Energy Distribution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Knotek, Rep. Prog. Phys. 47, 1499 (1984); T. E. Madey, D. E. Ramaker, and R. L. Stockbauer, Ann. Rev. Phys. Chem. 35, 215 (1984).CrossRefGoogle Scholar
  2. 2.
    P. Avouris and R. E. Walkup, Ann. Rev. Phys. Chem. 40, 173 (1989) .CrossRefGoogle Scholar
  3. 3.
    Y. X. Wang, F. Ohuchi and P. H. Holloway, J. Vac. Sci. Technol. A2, 732 (1984); D. S. McPhail, M. G. Dowsett, and E. H. C. Parker, J. Appl. Phys. 60, 2573 (1986)Google Scholar
  4. 4.
    A-M. Lanzillotto and C. W. Magee, J. Vac. Sci. Technol. (in pres).Google Scholar
  5. 5.
    P. Feulner, R. Treichler, and D. Menzel, Phys. Rev. B24, 7427 (1981).Google Scholar
  6. 6.
    P. Williams and G. Guillen, Surf. Sci. 180, L109 (1987).CrossRefGoogle Scholar
  7. 7.
    C. W. Magee, W. L. Harrington and R. E. Honig, Rev. Sci. Instr. 49, 477 (78).CrossRefGoogle Scholar
  8. 8.
    H. Poppa, and A. G. Elliot, Surf. Sci.24, 149 (1971); S. Thomas, J. Appl. Phys. 45, 161 (1974); J. S. Johannessen, W. E. Spicer, and Y. E. Strausser, J. Appl. Phys. 47, 3028 (1976).CrossRefGoogle Scholar
  9. 9.
    L. Calliari, M. Dapor, L. Gonzo, and F. Marchetti, these proceedings.Google Scholar
  10. 10.
    D. E. Ramaker, C. T. White, and J. S. Murday, Phys. Lett. 89A, 211 (1982).Google Scholar
  11. 11.
    P. J. Feibelman, Surf. Sci. 102, L51 (1981)CrossRefGoogle Scholar
  12. 12.
    R. Jaeger, J. Stöhr, R. Treichler and K. Baberschke, Phys. Rev. Let. 47, 1300 (1981).CrossRefGoogle Scholar
  13. 13.
    J. H. Neave, C. T. Foxon, and B. A. Joyce, Surf. Sci. 29, 411 (1979); J. E. Rowe and S. B. Christman, Solid. State Commun. 13, 315 (1973); E. J. McGuire, Phys. Rev. 16, 73 (1977).CrossRefGoogle Scholar
  14. 14.
    D. L. Walters and C. P. Bhalla, Phys. Rev. A4, 2164 (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • R. A. Baragiola
    • 1
  • T. E. Madey
    • 1
  • A.-M. Lanzillotto
    • 2
  1. 1.Department of Physics and Astronomy and Laboratory for Surface ModificationRutgers UniversityPiscatawayUSA
  2. 2.David Sarnoff Research CenterPrincetonUSA

Personalised recommendations