Velocity Distribution of Laser Photoionized Neutrals Ejected from Methanol-Dosed Aluminum(111) by Electron-Stimulated Desorption

  • C. E. Young
  • J. E. Whitten
  • M. J. Pellin
  • D. M. Gruen
  • P. L. Jones
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 19)

Abstract

Nonresonant multiphoton ionization at 193 nm wavelength was employed for efficient detection of electron-stimulated neutral desorption from A1(111) dosed with methanol to produce monolayer methoxide coverage. VeloCity spectra were measured by the flight time from the crystal surface to the focal region of the laser beam with a pulsed primary electron beam of 3 keV and the sample at 300 K. Either the C+ or HCO+ photofragment indicated the same non-Boltzmann veloCity spectrum for the neutral parent precursor with a peak kinetic energy of ~0.1 eV. Identical distributions were obtained when the cleaned crystal was pre-oxidized with O2 prior to methanol dosing. As the crystal temperature was raised, HCO+ photoion signal declined steadily, while C+ increased until ~550 K. The total cross section for loss of parent signal with dose of 3 keV electrons was measured to be (2±l)×l0-17 cm2.

Keywords

Formaldehyde Carbide Convolution Auger Methoxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review of recent work, see Desorption Induced by Electronic Transitions (DIET III), ed. by R. H. Stuhlen and M. L. Knotek, Part III. Springer-Verlag, Berlin (1988)Google Scholar
  2. 2.
    D. R. Sandstrom, M. J. Dresser and W. D. Dong: Phys. Rev. B34, 5125 (1986)Google Scholar
  3. 3.
    T. E. Madey and J. T. Yates Jr.: J. Vac. Sci. Technol. 8, 525 (1971)CrossRefGoogle Scholar
  4. 4.
    M. L. Knotek: Rep. Prog. Phys. 47, 1499 (1984)CrossRefGoogle Scholar
  5. 5.
    J. Kappert and F. Temps: Chem. Phys. 132, 197–208 (1989)CrossRefGoogle Scholar
  6. 6.
    C. E. Young, J. E. Whitten, M. J. Pellin, D. M. Gruen, R. L. Benbow and P. L. Jones: Surf. Interface Anal. 14, 647 (1989)CrossRefGoogle Scholar
  7. 7.
    J. E. Whitten et al.: to be publishedGoogle Scholar
  8. 8.
    J. G. Chen, P. Basu, L. Ng and J. T. Yates Jr.: Surf. Sci. 194, 397 (1988)CrossRefGoogle Scholar
  9. 9.
    G. D. Waddill and L. L. Kesmodel: Surf. Sci. 182, L248–L252 (1987)CrossRefGoogle Scholar
  10. 10.
    J. W. Rogers Jr., R. L. Hance and J. M. White: Surf. Sci. 100, 388 (1980)CrossRefGoogle Scholar
  11. 11.
    I. F. Tindall and J. C. Vickerman: Surf. Sci. 149, 577 (1981)CrossRefGoogle Scholar
  12. 12.
    H. F. Arlinghaus, W. F. Calaway, C. E. Young, M. J. Pellin, D. M. Gruen and L. L. Chase: J. Appl. Phys. 65, 281 (1988)CrossRefGoogle Scholar
  13. 13.
    J. E. Crowell, J. G. Chen and J. T. Yates Jr.: Surf. Sci. 165, 37–64 (1986)CrossRefGoogle Scholar
  14. 14.
    J. L. Erskine and R. L. Strong: Phys. Rev. B25, 5547 (1982)Google Scholar
  15. 15.
    P. Basu, J. G. Chen, L. Ng, M. L. Colaianni and J. T. Yates Jr.: J. Chem. Phys. 89, 2406 (1988)CrossRefGoogle Scholar
  16. 16.
    R. C. Sausa, A. J. Alfano and A. W. Miziolek: Appl. Optics. 26, 3588 (1987)CrossRefGoogle Scholar
  17. 17.
    D. Menzel and R. Gomer J. Chem. Phys. 41, 3311 (1964)CrossRefGoogle Scholar
  18. 18.
    P. A. Redhead: Can. J. Phys. 42, 886 (1964)CrossRefGoogle Scholar
  19. 19.
    Z. W. Gortel, H. J. Kreuzer, P. Feulner and D. Menzel: Phys. Rev. B35, 8951 (1987)Google Scholar
  20. 20.
    R. E. Walkup, Ph. Avouris, N. D. Lang, and R. Kawai: Phys. Rev. Lett. 63, 1972 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • C. E. Young
    • 1
  • J. E. Whitten
    • 1
  • M. J. Pellin
    • 1
  • D. M. Gruen
    • 1
  • P. L. Jones
    • 2
  1. 1.Materials Science/Chemistry DivisionsArgonne National LaboratoryArgonneUSA
  2. 2.Department of ChemistryThe Ohio State University and Spectra Technology, Inc.BellevueUSA

Personalised recommendations