Adsorption and UV-Laser Desorption of NO/O/Ni(100)

  • Th. Mull
  • H. Kuhlenbeck
  • G. Odörfer
  • R. Jaeger
  • C. Xu
  • B. Baumeister
  • M. Menges
  • G. Illing
  • H.-J. Freund
  • D. Weide
  • P. Andresen
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 19)

Abstract

We have studied adsorption as well as thermal and UV-laser (193 nm) desorption of NO adsorbed on Ni(100), on O(c2×2)/Ni(100) and on epitaxially grown oxides NiO(111) and NiO(100) using HREELS, XPS, NEXAFS, LEED and TPD. We find NO on NiO to be weakly chemisorbed. Laser desorption is only induced from the oxidic surfaces. Laser desorption cross sections are two orders of magnitude higher than gas phase photoabsorption cross sections for NO. NO2/NiO(100) has been studied via XPS, LEED and TPD. NO is probably the predominant desorption product under UV laser impact /1/. Reaction also takes place under XPS influence and under impact of secondary electrons from the X-ray gun. Possible desorption processes are discussed.

Keywords

Nickel Argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    E. Hasselbrink, S. Jakubith, S. Nettesheim, M. Wolf, A. Cassuto and G. Ertl, to be publishedGoogle Scholar
  2. /2/.
    F. Budde, A. V. Hamza, P. M. Ferm, G. Ertl, D. Weide, P. Andresen and H.-J. Freund Phys.Rev.Lett. 60 (1988) 1518; see also: F. Budde, Thesis, Technische Universitåt Berlin, 1988CrossRefGoogle Scholar
  3. /3/.
    P. M. Ferm, F. Budde, A. V. Hamza, S. Jakubith, G. Ertl, D. Weide, P. Andresen and H.-J. Freund, Surf.Sci. 218 (1989) 467CrossRefGoogle Scholar
  4. /4/.
    H. Kuhlenbeck, G. Odörfer, R. Jaeger, C. Xu, T. Mull, B. Baumeister, G. Illing, M. Menges, H.-J. Freund, D. Weide, P. Andresen, G. Watson, E. W. Plummer, Vacuum, Proceedings of the 11th International Vacuum Congress and 7th International Congress on Solid Surfaces, Cologne, FRG (1989), to be publishedGoogle Scholar
  5. /5/.
    Th. Mull, M. Menges, B. Baumeister, G. Odörfer, H. Geisler, H. Kuhlenbeck, H.-J. Freund, D. Weide, U. Schüller, P. Andresen, F.Budde, P. M. Ferm, A. V. Hamza and G.Ertl., Phys.Scripta, to be publishedGoogle Scholar
  6. /6/.
    B. E. Koel, D. E. Peebles, J. M. White, Surf.Sci. 125 (1983) 709CrossRefGoogle Scholar
  7. /7/.
    G. Dalmai-Imelik, J. C. Bertolini and J. Rousseau, Surf.Sci 63 (1977) 67CrossRefGoogle Scholar
  8. /8/.
    S. F. Marmo, J.Opt.Soc.Am. 43 (1953) 1186CrossRefGoogle Scholar
  9. /9/.
    A. R. Burns, D. R. Jennison and E. B. Stechel, Phys.Rev.B, to be publishedGoogle Scholar
  10. /10/.
    C. Fuggle and D. Menzel, Surf.Sci. 79 (1979) 1CrossRefGoogle Scholar
  11. /11/.
    T. Nakayama, M. Y. Kitamura, K. Watanabe, J.Chem.Phys. 30 (1959) 1180CrossRefGoogle Scholar
  12. /12/.
    G. C. Corey, J. E. Smedley, M. H. Alexander, W.-K. Lin, Surf.Sci. 191 (1987) 203CrossRefGoogle Scholar
  13. /13/.
    C. Kittel, Einführung in die Festkörperphysik, Oldenbourg Verlag, München — Wien, 6th ed. (1983) 515.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • Th. Mull
    • 1
  • H. Kuhlenbeck
    • 1
  • G. Odörfer
    • 1
  • R. Jaeger
    • 1
  • C. Xu
    • 1
  • B. Baumeister
    • 1
  • M. Menges
    • 1
  • G. Illing
    • 1
  • H.-J. Freund
    • 1
  • D. Weide
    • 2
  • P. Andresen
    • 2
  1. 1.Physikalische Chemie 1Ruhr-Universität BochumBochumFed. Rep of Germany
  2. 2.Max-Planck-Institut für StrömungsforschungGöttingenFed. Rep of Germany

Personalised recommendations