Electronic Energy Transport in Vinyl Aromatic Polymers

  • K. P. Ghiggino
  • A. D. Scully
  • O. Vogl
  • S. W. Bigger
Conference paper


Ultrafast electronic energy transport phenomena occurring in macromolecules following absorption of light were investigated using picosecond laser-based time-resolved fluorescence instrumentation and computer-aided data analysis procedures. Analysis of the fluorescence data for copolymers of 2-naphthylmethacrylate (2NMA) and 2-(2’-hydroxy-4’-methacryloxyphenyl)-2H-benzotriazole (BDHM), indicate that the dominant energy transport mechanism is a one-step Forster-type process from both monomer and excimer sites to the BDHM trap sites in the polymer chain. The trapping of excitation energy by the highly photostable BDHM moieties results in enhanced photostability of the copolymers compared to poly(2-naphthyl methacrylate) (P2NMA).


Fluorescence Decay Energy Migration Excimer Formation Monomer Fluorescence Excimer Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phillips D (ed) (1985) Polymer Photophysics, Chapman and Hall, LondonGoogle Scholar
  2. 2.
    Guillet JE (1985) Photophysics and Photochemistry of Polymers, Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Hoyle CE and Torkelson JM (1987) Photophysics of Polymers, ACS Symposium Series 358CrossRefGoogle Scholar
  4. 4.
    Somersall AC and Guillet JE (1973) Macromolecules, 6:218CrossRefGoogle Scholar
  5. 5.
    Forster Th (1949) Z Naturforsch, 4A:321Google Scholar
  6. 6.
    Forster Th (1959) Disc Faraday Soc, 27:7CrossRefGoogle Scholar
  7. 7.
    Li S, Albertsson A-C, Gupta A, Bassett W and Vogl O (1984) Monatsch Chem, 115:853CrossRefGoogle Scholar
  8. 8.
    Ghiggino KP, Bigger SW, Smith TA, Skilton PF and Tan KL (1987) In: Hoyle CE and Torkelson JM (eds) Photophysics of Polymers, ACS Symposium Series 358, Ch 28Google Scholar
  9. 9.
    Coulter DR, Gupta A, Yavrouian A, Scott GW, O’Connor D, Vogl O and Li S-C (1986) Macromolecules, 19:1227CrossRefGoogle Scholar
  10. 10.
    Coulter DR, Gupta A, Miskowski VM and Scott GW (1987) In: Hoyle CE and Torkelson JM (eds) Photophysics of Polymers, ACS Symposium Series 358, Ch 22Google Scholar
  11. 11.
    Boudevska H, Brutchkov C and Astrug A (1979) Makromol Chem, 180:1113CrossRefGoogle Scholar
  12. 12.
    Flory PJ (1969) Statistical Mechanics of Chain Molecules, Interscience, New YorkGoogle Scholar
  13. 13.
    Bennet RG (1964) J Chem Phys, 41:3037CrossRefGoogle Scholar
  14. 14.
    Merle-Aubry L, Holden DA, Merle Y and Guillet JE (1980) Macromolecules, 13:1138CrossRefGoogle Scholar
  15. 15.
    Holden DA, Shephard SE and Guillet JE, Macromolecules (1982) 15:1481CrossRefGoogle Scholar
  16. 16.
    Ghiggino KP, Scully AD and Bigger SW (1988) In: Reichmans E and O’Donnell JH (eds) The Effects of Radiation on High-Technology Polymers, ACS Symposium Series 381, Ch 5Google Scholar
  17. 17.
    Ghiggino KP, Scully AD, Bigger SW, Yandell MD and Vogl O (1988) J Polym Sci, Polym Lett, 26:505CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • K. P. Ghiggino
    • 1
  • A. D. Scully
    • 1
  • O. Vogl
    • 1
    • 2
  • S. W. Bigger
    • 1
  1. 1.Department of Physical ChemistryThe University of MelbourneParkvilleAustralia
  2. 2.Polytechnic UniversityUSA

Personalised recommendations