Sea Ice Under Complex Stress States: Constitutive Modelling and Testing

  • F. U. Häusler
  • H. G. Matthies
  • C. S. Moore
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Based on typical ice-structure interaction scenarios the importance of complex stress states for ice load evaluation is emphasized. The thermodynamic basis for a constitutive model for the description of sea ice is formulated, taking into account complex stress states and damage. It is suggested that the effect of total porosity on sea ice strength be considered in a constitutive model as some kind of existing damage. Procedures for determining the strength characteristics of sea ice under complex stress states are described.


Failure Envelope Continuum Damage Mechanic Complex Stress State Dissipation Potential Multiaxial Stress State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashby, M.F. and Hallam, S.D. 1986. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall., Vol. 34, pp. 497–510.CrossRefGoogle Scholar
  2. Betten, J. 1983. Damage tensors in continuum mechanics. J. de Mecanique, Vol. 22, pp. 13–32.Google Scholar
  3. de Groot, S.R. and Masur, P. 1984. Non-equilibrium thermodynamics. Dover, New York.Google Scholar
  4. Frost, H.J. and Ashby, M.F. 1982. Deformation mechanism maps - The plasticity and creep of metals and ceramics. Pergamon Press, Oxford.Google Scholar
  5. Gerstle, K.H., Linse, D.H., Bertacci, P., Kotsovos, M.D., Ko, H.-Y., Newman, J.B., Rossi, P., Schickert, G., Taylor, M.A., Traina, L.A. and Zimmerman, R.M. 1976. Strength of concrete under multiaxial stress states. Proc. McHenry Symposium, Mexico City, October 1976, pp. 103–131.Google Scholar
  6. Gold, L.W., 1972. The failure process in columnar-grained ice. National Research Council, Canada, Technical paper No. 369.Google Scholar
  7. Halphen, B. and Nguyen, Q.S. 1975. Sur les materiaux standards generalises. J. de Mecanique, 14, pp. 39–63.MATHGoogle Scholar
  8. Hausler, F.U. 1989. Beitrag zur Ermittlung der Krafte beim Eisbrechen unter besonderer Berucksichtigung der Anisotropic des Eises und seiner Versagenseigenschaften unter mehrachsiger Beanspruchung. Diss. TU Hamburg-Harburg. Institut fur Schiffbau der Universitat Hamburg, Bericht Nr. 494.Google Scholar
  9. Hausler, F.U. 1983. Comparison between different yield functions for saline ice. Annals of Glaciology, Vol. 4, pp. 105–109.Google Scholar
  10. Hausler, F.U. 1986. Multiaxial mechanical properties of urea doped ice. Proc. IAHR - Symposium on Ice, Iowa City, August 18–22, 1986, Vol. 1, pp. 349–363.Google Scholar
  11. Hausler, F.U. 1988. Reference strengths based on total porosity - a tool for the description of the ductile and brittle strength of ice frozen from sea water or other aqueous solutions. Proc. Ninth IAHR Ice Symposium, ed. H. Saeki and K. Hirayama, Sapporo, Vol. l, pp. 77–91.Google Scholar
  12. Hausler, F.U., Earle, E.N. and Gerchow, P. 1988. Uniaxial and biaxial compressive strength of ice sampled from multi-year pressure ridges. In: Port and Ocean Engineering under Arctic Conditions, ed. W.M. Sackinger, and M.O. Jeffries, Vol. 1, pp. 1–12.Google Scholar
  13. Hilsdorf, H. 1965. Bestimmung der zweiachsigen Festigkeit des Betons. Deutscher Ausschuss fur Stahlbeton, Heft 173, Wilhelm Ernst und Sohn, Berlin.Google Scholar
  14. Hult, J. 1979. CDM capabilities, limitation and promises. In: Mechanisms of Deformation and Fracture, ed. K.E. Easterling, Pergamon Press, Oxford,Google Scholar
  15. Jones, S.J. 1982. The confined compressive strength of polycrystalline ice. Journal of Glaciology 28 (98), pp. 171–177.Google Scholar
  16. Kachanov, L.M. 1958. Time of the rupture process under creep conditions. Izv. Akad. Nauk SSR, Otd. Tech. Nauk, 8, pp. 26–31.Google Scholar
  17. von Karman, Th. 1911. Festigkeitsversuche unter allseitigem Druck. Zeitschrift des VDI, Heft 42, pp. 37–68.Google Scholar
  18. Krajcinovic, D. 1985. Continuous damage mechanics revisited: Basic concepts and definitions. J. of Applied Mechanics, Vol. 52, pp. 829–834.CrossRefGoogle Scholar
  19. Krawietz, A. 1986. Materialtheorie. Springer Verlag, Berlin.MATHGoogle Scholar
  20. Lasonde, G. J., Gies, M.C. and Schulson, E.M. 1988. The effects of end conditions on the strength and fracture of ice under compression. Proc. Ninth IAHR Ice Symposium, ed. H. Saeki and K. Hirayama, Sapporo, Vol.1, ppv99–108.Google Scholar
  21. Leckie, F.A. and Onat, E.T. 1981. Tensorial nature of damage measuring internal variables. Physical Non-Linearities in Structural Analysis, ed. H. Hult and J. Lemaitre, Springer-Verlag, Berlin, pp. 140–155.Google Scholar
  22. Lemaitre, J. 1985. Coupled elasto-plasticity and damage constitutive equations. Comp. Meth. Appl. Mech. Eng., Vol. 51, pp. 31–50.CrossRefMATHGoogle Scholar
  23. Lemaitre, J. and Marquis, D. 1988. Modelling elasto-plasticity, damage and ageing as coupled behaviours in engineering materials. Applied Solid Mechanics-2, ed. A.S. Tooth and J. Spence, Elsevier Applied Science, London, p. 277–302.Google Scholar
  24. Marsden, J.E. and Hughes, T.J.R. 1983. Mathematical foundations of elasticity. Prentice Hall, Englewood Cliffs, N.J.MATHGoogle Scholar
  25. Matthies, H.G. 1989. The rate problem for complex material behaviour with internal variables. Proc. Computational Plasticity - COMPLAS II - Barcelona 1989, ed. D.R.J. Owen et al., Pineridge Press, Swansea, pp. 27–48.Google Scholar
  26. Murakami, S. and Ohno, N. 1981. A continuum theory of creep and creep damage, in: Creep in Structures, ed. A.R.S. Ponter and D.R. Hayhurst, Springer Verlag, Berlin, pp. 422–444.CrossRefGoogle Scholar
  27. Noll, W. 1972. A new mathematical theory of simple materials. Arch. Rat. Mech. Anal., Vol. 48, p. 1–50.CrossRefMATHMathSciNetGoogle Scholar
  28. Oden, J.T. 1986. Qualitative methods in nonlinear mechanics. Prentice Hall, Englewood Cliffs, N.J,Google Scholar
  29. Sammis, C.G. and Ashby, M.F. 1986. The failure of brittle porous solids under compressive stress states. Acta Metall., Vol. 34, No. 3, pp. 511–526.CrossRefGoogle Scholar
  30. Sanderson, T.J.O. 1988. Ice mechanics - risks to offshore structures. Graham and Trotman, London.Google Scholar
  31. Sinha, N.K. 1982. Delayed elastic strain criterion for first cracks in ice. Proc. IUTAM Symposium on Deformation and Failure of Granular Materials, ed. P.A. Vermeer, and H.J.A. Luger, A.A. Balkema, Rotterdam, pp. 323–330.Google Scholar
  32. Sjolind, S.G. 1987. A constitutive model for ice as a damaging visco-elastic material. Cold Regions Science and Technology, Vol. 14, pp. 247–262.CrossRefGoogle Scholar
  33. Timco, G.W. and Frederking, R.M.W. 1984. An investigation of the failure envelope of granular/discontinuous columnar sea ice. Cold Regions Science and Technology, Vol. 9, pp. 17–27.CrossRefGoogle Scholar
  34. Timco, G.W. and Frederking, R.M.W. 1986. Confined compression tests: Outlining the failure envelope of columnar sea ice. Cold Regions Science and Technology, Vol. 12, pp. 13–28.CrossRefGoogle Scholar
  35. Tomin, M.J., Cheung, M., Cormeau, A. and Jordaan, I.J. 1986. Analysis of failure modes and damage processes of freshwater ice in indentation tests. Proc. Fifth OMAE, ed. V.J. Lunardini, et al., ASME, New York, Vol.IV, pp. 453–460.Google Scholar
  36. Weeks, W.F. and Assur, A. 1968. The mechanical properties of sea ice. Proc. Ice Pressures against Structures, Quebec, Canada, 1966. National Research Council of Canada, Associate Committe on Geotechnical Research, Technical Memorandum No. 92, pp. 25–78.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • F. U. Häusler
    • 1
  • H. G. Matthies
    • 2
  • C. S. Moore
    • 2
  1. 1.Hamburgische Schiffbau-Vesuchsanstalt GmbHHamburgF.R. Germany
  2. 2.Germanischer LloydHamburgF.R. Germany

Personalised recommendations