Skip to main content

Sea Ice Under Complex Stress States: Constitutive Modelling and Testing

  • Conference paper

Abstract

Based on typical ice-structure interaction scenarios the importance of complex stress states for ice load evaluation is emphasized. The thermodynamic basis for a constitutive model for the description of sea ice is formulated, taking into account complex stress states and damage. It is suggested that the effect of total porosity on sea ice strength be considered in a constitutive model as some kind of existing damage. Procedures for determining the strength characteristics of sea ice under complex stress states are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby, M.F. and Hallam, S.D. 1986. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall., Vol. 34, pp. 497–510.

    Article  Google Scholar 

  • Betten, J. 1983. Damage tensors in continuum mechanics. J. de Mecanique, Vol. 22, pp. 13–32.

    Google Scholar 

  • de Groot, S.R. and Masur, P. 1984. Non-equilibrium thermodynamics. Dover, New York.

    Google Scholar 

  • Frost, H.J. and Ashby, M.F. 1982. Deformation mechanism maps - The plasticity and creep of metals and ceramics. Pergamon Press, Oxford.

    Google Scholar 

  • Gerstle, K.H., Linse, D.H., Bertacci, P., Kotsovos, M.D., Ko, H.-Y., Newman, J.B., Rossi, P., Schickert, G., Taylor, M.A., Traina, L.A. and Zimmerman, R.M. 1976. Strength of concrete under multiaxial stress states. Proc. McHenry Symposium, Mexico City, October 1976, pp. 103–131.

    Google Scholar 

  • Gold, L.W., 1972. The failure process in columnar-grained ice. National Research Council, Canada, Technical paper No. 369.

    Google Scholar 

  • Halphen, B. and Nguyen, Q.S. 1975. Sur les materiaux standards generalises. J. de Mecanique, 14, pp. 39–63.

    MATH  Google Scholar 

  • Hausler, F.U. 1989. Beitrag zur Ermittlung der Krafte beim Eisbrechen unter besonderer Berucksichtigung der Anisotropic des Eises und seiner Versagenseigenschaften unter mehrachsiger Beanspruchung. Diss. TU Hamburg-Harburg. Institut fur Schiffbau der Universitat Hamburg, Bericht Nr. 494.

    Google Scholar 

  • Hausler, F.U. 1983. Comparison between different yield functions for saline ice. Annals of Glaciology, Vol. 4, pp. 105–109.

    Google Scholar 

  • Hausler, F.U. 1986. Multiaxial mechanical properties of urea doped ice. Proc. IAHR - Symposium on Ice, Iowa City, August 18–22, 1986, Vol. 1, pp. 349–363.

    Google Scholar 

  • Hausler, F.U. 1988. Reference strengths based on total porosity - a tool for the description of the ductile and brittle strength of ice frozen from sea water or other aqueous solutions. Proc. Ninth IAHR Ice Symposium, ed. H. Saeki and K. Hirayama, Sapporo, Vol. l, pp. 77–91.

    Google Scholar 

  • Hausler, F.U., Earle, E.N. and Gerchow, P. 1988. Uniaxial and biaxial compressive strength of ice sampled from multi-year pressure ridges. In: Port and Ocean Engineering under Arctic Conditions, ed. W.M. Sackinger, and M.O. Jeffries, Vol. 1, pp. 1–12.

    Google Scholar 

  • Hilsdorf, H. 1965. Bestimmung der zweiachsigen Festigkeit des Betons. Deutscher Ausschuss fur Stahlbeton, Heft 173, Wilhelm Ernst und Sohn, Berlin.

    Google Scholar 

  • Hult, J. 1979. CDM capabilities, limitation and promises. In: Mechanisms of Deformation and Fracture, ed. K.E. Easterling, Pergamon Press, Oxford,

    Google Scholar 

  • Jones, S.J. 1982. The confined compressive strength of polycrystalline ice. Journal of Glaciology 28 (98), pp. 171–177.

    Google Scholar 

  • Kachanov, L.M. 1958. Time of the rupture process under creep conditions. Izv. Akad. Nauk SSR, Otd. Tech. Nauk, 8, pp. 26–31.

    Google Scholar 

  • von Karman, Th. 1911. Festigkeitsversuche unter allseitigem Druck. Zeitschrift des VDI, Heft 42, pp. 37–68.

    Google Scholar 

  • Krajcinovic, D. 1985. Continuous damage mechanics revisited: Basic concepts and definitions. J. of Applied Mechanics, Vol. 52, pp. 829–834.

    Article  Google Scholar 

  • Krawietz, A. 1986. Materialtheorie. Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Lasonde, G. J., Gies, M.C. and Schulson, E.M. 1988. The effects of end conditions on the strength and fracture of ice under compression. Proc. Ninth IAHR Ice Symposium, ed. H. Saeki and K. Hirayama, Sapporo, Vol.1, ppv99–108.

    Google Scholar 

  • Leckie, F.A. and Onat, E.T. 1981. Tensorial nature of damage measuring internal variables. Physical Non-Linearities in Structural Analysis, ed. H. Hult and J. Lemaitre, Springer-Verlag, Berlin, pp. 140–155.

    Google Scholar 

  • Lemaitre, J. 1985. Coupled elasto-plasticity and damage constitutive equations. Comp. Meth. Appl. Mech. Eng., Vol. 51, pp. 31–50.

    Article  MATH  Google Scholar 

  • Lemaitre, J. and Marquis, D. 1988. Modelling elasto-plasticity, damage and ageing as coupled behaviours in engineering materials. Applied Solid Mechanics-2, ed. A.S. Tooth and J. Spence, Elsevier Applied Science, London, p. 277–302.

    Google Scholar 

  • Marsden, J.E. and Hughes, T.J.R. 1983. Mathematical foundations of elasticity. Prentice Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Matthies, H.G. 1989. The rate problem for complex material behaviour with internal variables. Proc. Computational Plasticity - COMPLAS II - Barcelona 1989, ed. D.R.J. Owen et al., Pineridge Press, Swansea, pp. 27–48.

    Google Scholar 

  • Murakami, S. and Ohno, N. 1981. A continuum theory of creep and creep damage, in: Creep in Structures, ed. A.R.S. Ponter and D.R. Hayhurst, Springer Verlag, Berlin, pp. 422–444.

    Chapter  Google Scholar 

  • Noll, W. 1972. A new mathematical theory of simple materials. Arch. Rat. Mech. Anal., Vol. 48, p. 1–50.

    Article  MATH  MathSciNet  Google Scholar 

  • Oden, J.T. 1986. Qualitative methods in nonlinear mechanics. Prentice Hall, Englewood Cliffs, N.J,

    Google Scholar 

  • Sammis, C.G. and Ashby, M.F. 1986. The failure of brittle porous solids under compressive stress states. Acta Metall., Vol. 34, No. 3, pp. 511–526.

    Article  Google Scholar 

  • Sanderson, T.J.O. 1988. Ice mechanics - risks to offshore structures. Graham and Trotman, London.

    Google Scholar 

  • Sinha, N.K. 1982. Delayed elastic strain criterion for first cracks in ice. Proc. IUTAM Symposium on Deformation and Failure of Granular Materials, ed. P.A. Vermeer, and H.J.A. Luger, A.A. Balkema, Rotterdam, pp. 323–330.

    Google Scholar 

  • Sjolind, S.G. 1987. A constitutive model for ice as a damaging visco-elastic material. Cold Regions Science and Technology, Vol. 14, pp. 247–262.

    Article  Google Scholar 

  • Timco, G.W. and Frederking, R.M.W. 1984. An investigation of the failure envelope of granular/discontinuous columnar sea ice. Cold Regions Science and Technology, Vol. 9, pp. 17–27.

    Article  Google Scholar 

  • Timco, G.W. and Frederking, R.M.W. 1986. Confined compression tests: Outlining the failure envelope of columnar sea ice. Cold Regions Science and Technology, Vol. 12, pp. 13–28.

    Article  Google Scholar 

  • Tomin, M.J., Cheung, M., Cormeau, A. and Jordaan, I.J. 1986. Analysis of failure modes and damage processes of freshwater ice in indentation tests. Proc. Fifth OMAE, ed. V.J. Lunardini, et al., ASME, New York, Vol.IV, pp. 453–460.

    Google Scholar 

  • Weeks, W.F. and Assur, A. 1968. The mechanical properties of sea ice. Proc. Ice Pressures against Structures, Quebec, Canada, 1966. National Research Council of Canada, Associate Committe on Geotechnical Research, Technical Memorandum No. 92, pp. 25–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Häusler, F.U., Matthies, H.G., Moore, C.S. (1991). Sea Ice Under Complex Stress States: Constitutive Modelling and Testing. In: Jones, S., Tillotson, J., McKenna, R.F., Jordaan, I.J. (eds) Ice-Structure Interaction. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84100-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84100-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84102-6

  • Online ISBN: 978-3-642-84100-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics