Skip to main content

The Tensile and Compressive Fracture of Ice

  • Conference paper
Ice-Structure Interaction

Abstract

The brittle fracture of ice under uniaxial tension and compression is discussed in terms of the nucleation and the propagation of internal cracks. The discussion reveals that fracture under both applied stress states can be understood in terms of theories previously developed for the fracture of brittle solids. Also, it shows that the applied strain rate which marks the transition from ductile to brittle behavior under compression can be expressed quantitatively by invoking a fracture model which incorporates crack-tip creep and frictional crack sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASTM - E 399. 1981. Standard test method for plane-strain fracture toughness of metallic materials. Amer. Soc. for Test, and Mater.

    Google Scholar 

  • Ashby, M.F. and Hallam, S.D. 1986. The failure of brittle solids containing small cracks under compressive stress states. Acta Met. Vol. 34, pp. 497–510.

    Article  Google Scholar 

  • Barnes, P., Tabor, D., and Walker, J.F.C. 1971. The friction and creep of polycrystalline ice. Proc. Royal Society of London, A. Vol. 324, pp. 127–155.

    Article  Google Scholar 

  • Cannon, N.P., Schulson, E.M., and Smith, T.R. 1989. Wing cracks in ice. (to be submitted for publication).

    Google Scholar 

  • Cole, D.M. 1987. Strain-rate and grain-size effects in ice. J. Glaciology. Vol. 33, pp. 274–280.

    Google Scholar 

  • Costin, L.S. 1983. A microcrack model for the deformation and failure of brittle rock. J. Geophys. Res. Vol. 88, pp. 9485–9492.

    Article  Google Scholar 

  • Costin, L.S. 1985. Damage mechanics in the post-failure region. Mech. of Mater. Vol. 4, pp. 149–160.

    Article  Google Scholar 

  • Currier, J.H. and Schulson, E.M. 1982. The tensile strength of ice as a function of grain size. Acta Met. Vol. 30, pp. 1511–1514.

    Article  Google Scholar 

  • Glen, J.W. 1953. The creep of polycrystalline ice. Proc. Roy. Soc. A. Vol. 228, pp. 519–538.

    Google Scholar 

  • Goetze, C.G. 1965. A study of brittle fracture as applied to ice. USA-CRREL Tech. Note (unpublished).

    Google Scholar 

  • Gold, L.W. 1966. Dependence of crack formation on crystallographic orientation for ice. Can. J. Phys. Vol. 44, pp. 2757–2764.

    Article  Google Scholar 

  • Gold, L.W. 1970. Process of failure in ice. Can. Geotech. J. Vol. 7, pp. 405–413.

    Article  Google Scholar 

  • Gold, L.W. 1972. The process of failure of columnar-grained ice. Phil. Mag. Vol. 26, pp. 311–328.

    Article  Google Scholar 

  • Hawkes, I. and Mellor, M. 1972. Deformation and fracture of ice under uniaxial stress. J. Glaciology. Vol. 11, pp. 103–129.

    Google Scholar 

  • Horii, H. and Nemat-Nasser, S. 1986. Brittle fracture in compression: splitting, faulting and brittle-ductile transition. Phil. Trans. Roy. Soc. London. A. Vol. 319, pp. 337–374.

    Article  MATH  Google Scholar 

  • Jaeger, C. and Cook, N.G.W. 1979. Fundamentals of Rock Mechanics ( 3rd ed ). London: Chapman Hall.

    Book  Google Scholar 

  • Jones, D.E. 1989. An experimental investigation of low-speed, ice — ice friction. M.E. Thesis, Thayer School of Engineering, Dartmouth College.

    Google Scholar 

  • Jones, S.J. 1982. The confined compressive strength of polycrystalline ice. J. Glaciology. Vol. 28, pp. 171–177.

    Google Scholar 

  • Kalifa, P., Duval, P., and Ricard, M. 1989. Nucleation of cracks in polycrystalline ice under compression. Proc. OMAE, The Hague, The Netherlands, Vol. 4, pp. 13–21.

    Google Scholar 

  • Kuehn, G.A., Schulson, E.M. and Nixon, W.A. 1988. The effects of prestrain on the compressive ductile-to-brittle transition in ice. Proc. IAHR Ice Symp., Sapporo, Japan, pp. 109–117.

    Google Scholar 

  • Kuehn, G.A. and Schulson, E.M. 1989. (unpublished results).

    Google Scholar 

  • Lee, R.W. and Schulson, E.M. 1988. The strength and ductility of ice under tension. J. Offshore Mechanics Arctic Engg. Vol. 110, pp. 187–191.

    Article  Google Scholar 

  • McClintock, F.A. and Walsh, J.B. 1963. Friction on Griffith cracks in rock under pressure. Proc. 4th U.S. Nat. Cong. Appl. Mech. ASME. Vol. 2. pp. 1015–1021.

    Google Scholar 

  • Nemat-Nasser, S. and Horii, H. 1982. Compression-induced nonplanar crack extension with application to splitting, exfoliation and rockburst. J. Geophys. Res. Vol. 87, pp. 6805–6821.

    Article  Google Scholar 

  • Schulson, E.M. and Cannon, N.P. 1984. The effect of grain size on the compressive strength of ice. IAHR Ice Symp., Hamburg, Germany, pp. 24–38.

    Google Scholar 

  • Schulson, E.M., Lim, P.N. and Lee, R.W. 1984. A brittle to ductile transition in ice under tension. Phil. Mag. Vol. 49, pp. 353–363.

    Article  Google Scholar 

  • Schulson, E.M.; Baker, I., Robertson, C.D., Bolon, R.B., and Harnimon, R.J. 1989a. Fractography of ice. J. Mat. Sci. Letts. Vol. 8, pp. 1193–1194.

    Article  Google Scholar 

  • Schulson, E.M., Gies, M.C. and Lasonde, G.J. 1989b. The effect of the specimen-platen interface on internal cracking and brittle fracture of ice under compression: highspeed photography. J. Glaciology, Vol. 35, pp. 378–382.

    Google Scholar 

  • Schulson, E.M., Hoxie, S.G., and Nixon, W.A. 1989c. The tensile strength of cracked ice. Phil. Mag. A. Vol. 59, pp. 303–311.

    Article  Google Scholar 

  • Sinha, N.K. 1982. Delayed elastic strain criterion for first cracks in ice. Proc. IUTAM Symp. of Deformation and Failure of Granular Materials, pp. 323–330.

    Google Scholar 

  • Smith, E. and Barnby, J.T. 1967. Crack nucleation in crystalline solids. Metal Sci. J. Vol. 1, pp. 56–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulson, E.M. (1991). The Tensile and Compressive Fracture of Ice. In: Jones, S., Tillotson, J., McKenna, R.F., Jordaan, I.J. (eds) Ice-Structure Interaction. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84100-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84100-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84102-6

  • Online ISBN: 978-3-642-84100-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics