Advertisement

Specific Proteins of Inflammatory Cells and α1-Proteinase Inhibitor in Alveolar Epithelial Lining Fluid of Polytraumatized Patients: Do They Indicate Posttraumatic Lung Failure?

  • M. Jochum
  • A. Dwenger
  • W. Machleidt

Abstract

Despite numerous hints that activated inflammatory cells may trigger lung injury, the causative role especially of the polymorphonuclear (PMN) granulocytes (neutrophils) to promote enhanced microvascular permeability in acute respiratory distress syndrome (ARDS) is still a matter of debate [22, 25, 27, 28, 31]. In the early 1980s, Hammerschmidt et al. [11] demonstrated that complement-mediated neutrophil sequestration in pulmonary capillaries leading to lung vascular endothelial injury was a common feature of patients suffering from acute respiratory distress syndrome (ARDS). Meanwhile, however, a wealth of basic information exists indicating that neutrophil activation occurs to a similar extent in high-risk patients who do not, however, eventually develop ARDS [21]. Moreover, signs of ARDS have been described in neutropenic patients, thus calling into question whether neutrophils are required in the generation of ARDS [19]. Yet, the latter observations may be taken as an indirect evidence for the importance of other inflammatory cells, e.g., activated alveolar macrophages [7], in disturbing the alveolar barrier from the epithelial side of the alveoli, at least in neutropenic patients.

Keywords

Idiopathic Pulmonary Fibrosis Acute Respiratory Distress Syndrome Neutrophil Elastase Adult Respiratory Distress Syndrome Acute Respiratory Distress Syndrome Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamson IY, Young L, Bowden D (1988) Relationship of alveolar epithelial injury and repair to the production of pulmonary fibrosis. Am J Pathol 130:377PubMedGoogle Scholar
  2. 2.
    Assfalg-Machleidt I, Jochum M, Klaubert W, Inthorn D, Machleidt W (1988) Enzymatically active cathepsin B dissociating from its inhibitor complexes is elevated in blood plasma of patients with septic shock and some malignant tumors. Biol Chem Hoppe Seyler 369 [Suppl]: 263PubMedGoogle Scholar
  3. 3.
    Auler JO, Cahlheiros DF, Brentani MM, Santello JL, Lemos PC, Saldiva PH (1986) Adult respiratory distress syndrome: evidence of early fibrogenesis and absence of glucocorticoid receptors. Eur J Respir Dis 69:261Google Scholar
  4. 4.
    Bander MJ, Rice AG, Griffin GL, Senior RM (1988) 1-Proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J Biol Chem 263:4481Google Scholar
  5. 5.
    Brody AR, Bittermann PB (1988) The lung matrix and inflammation: Part II. Biochemical and molecular mechanisms of fibrogenesis: Implications of environmental lung disease. Am Rev Respir Dis 138:1056PubMedGoogle Scholar
  6. 6.
    Cantin AM, Boileau R, Begin R (1988) Increased procollagen III aminoterminal peptide - related antigens and fibroblast growth signals in the lungs of patients with idiopathic pulmonary fibrosis. Am Rev Respir Dis 137:572PubMedGoogle Scholar
  7. 7.
    Chapman HA Jr, Stone OL (1984) Comparison of live human neutrophil and alveolar macrophage elastolytic activity in vitro. J Clin Invest 74:1693PubMedCrossRefGoogle Scholar
  8. 8.
    Desrochers PE, Weiss SJ (1988) Proteolytic inactivation of alpha-1-proteinase inhibitor by a neutrophil metalloproteinase. J Clin Invest 81:1646PubMedCrossRefGoogle Scholar
  9. 9.
    Dwenger A, Schweitzer G, Regel G (1986) Bronchoalveolar lavage fluid and plasma proteins, chemiluminescence response and protein contents of polymorphonuclear leukocytes from blood and lavage fluid in traumatized patients. J Clin Chem Clin Biochem 24:73PubMedGoogle Scholar
  10. 10.
    Fowler AA, Hyers TM, Fisher BJ, Bechard DE, Centor RM, Webster RO (1987) The adult respiratory distress syndrome. Cell populations and soluble mediators in the air spaces of patients at high risk. Am Rev Respir Dis 136:1225PubMedCrossRefGoogle Scholar
  11. 11.
    Hammerschmidt DW, Weaver LJ, Hudson LD, Craddock PR, Jacobs HS (1980) Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome: pathophysiologic relevance and possible prognostic value. Lancet 1:947PubMedCrossRefGoogle Scholar
  12. 12.
    Holter JF, Weiland JE, Pacht ER, Gadek JE, Davis WB (1986) Protein permeability in adult respiratory distress syndrome. J Clin Invest 78:1513PubMedCrossRefGoogle Scholar
  13. 13.
    Idell S, Kucich U, Fein A, Kueppers F, James HL, Walsh PN, Weinbaum G, Colman RW, Cohen AB (1985) Neutrophil elastase-releasing factors in bronchoalveolar lavage from patients with adult respiratory distress syndrome. Am Rev Respir Dis 132:1098PubMedGoogle Scholar
  14. 14.
    Jochum M, Fritz H (1989) Pathobiochemical mechanisms in inflammation. In Faist E, Ninnemann JL, Green DR (eds) Immune consequences of trauma, shock and sepsis. Springer, Berlin Heidelberg New York Tokyo, p 165Google Scholar
  15. 15.
    Joka Th, Nakhosteen JA, Obertacke U, Herrmann J, Coenen Th, Brand M, Jochum M, Zilow G, Dwenger A, Kreuzfelder E (1988) Beeinflußt die bronchoalveoläre Lavage das Milieu in der Alveole? Prax Klin Pneumol 42:705PubMedGoogle Scholar
  16. 16.
    Kreuzfelder E, Joka Th, Keinecke H-O, Obertacke U, Schmit-Neuerburg K-P, Nakhosteen JA, Paar D, Scheiermann N (1988) Adult respiratory distress syndrome as a specific manifestation of a general permeability defect in trauma patients. Am Rev Respir Dis 137:95PubMedCrossRefGoogle Scholar
  17. 17.
    Nemet K, Simonovitis I (1985) The biological role of lactoferrin. Haematologia 18:3PubMedGoogle Scholar
  18. 18.
    Nowak D (1988) The comparative study of reactive oxygen species generated by polymorphonuclear leukocytes as 1-proteinase inhibitor inactivators. Possible application for antioxidant prevention of emphysema. Arch Immunol Ther Exp 36:723Google Scholar
  19. 19.
    Ognibene FP, Martin SE, Parker MM (1986) Adult respiratory distress syndrome in patients with severe neutropenia. N Engl J Med 315:547PubMedCrossRefGoogle Scholar
  20. 20.
    Pacht ER, Davis WB (1988) Role of transferrin and ceruloplasmin in antioxidant activity of lung epithelial lining fluid. J Appl Physiol 64:2092PubMedCrossRefGoogle Scholar
  21. 21.
    Parsons PE, Worthen GS, Moore EE, Tate RM, Henson PM (1989) The association of circulating endotoxin with the development of the adult respiratory distress syndrome. Am Rev Respir Dis 140:294PubMedCrossRefGoogle Scholar
  22. 22.
    Regel G, Dwenger A, Seidel J, Nerlich ML, Sturm JA, Tscherne H (1987) Die Bedeutung der neutrophilen Granulozyten bei der Entstehung des posttraumatischen Lungenversagens. Unfallchirurg 90:99PubMedGoogle Scholar
  23. 23.
    Rennard SJ, Basset G, Lecossier D, O’Donnell KM, Pinkston P, Martin PG, Crystal RG (1986) Estimation of volume of epithelial lining fluid recovered by lavage using urea as a marker of dilution. J Appl Physiol 60:532PubMedGoogle Scholar
  24. 24.
    Reynolds HY (1987) State of the art: bronchoalveolar lavage. Am Rev Respir Dis 135:250PubMedGoogle Scholar
  25. 25.
    Rinaldo JE (1986) Mediation of ARDS by leukocytes. Chest 89:590PubMedCrossRefGoogle Scholar
  26. 26.
    Schraufstatter I, Revak SD, Cochrane CG (1984) Biochemical factors in pulmonary inflammatory disease. Federation Proc 43:2807Google Scholar
  27. 27.
    Shale DJ (1987) The adult respiratory distress syndrome - 20 years on. Thorax 42:641PubMedCrossRefGoogle Scholar
  28. 28.
    Thommasen HV (1985) The role of the polymorphonuclear leukocyte in the pathogenesis of the adult respiratory distress syndrome. Clin Invest Med 8:185PubMedGoogle Scholar
  29. 29.
    Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Am Rev Biochem 52:655CrossRefGoogle Scholar
  30. 30.
    Varani J, Fligiel SEG, Till GO (1985) Pulmonary endothelial cell killing by human neutrophils. Possible involvement of hydroxyl radical. Lab Invest 53:565Google Scholar
  31. 31.
    Weiland JE, Davis WD, Holter JF, Mohammed JR, Dorinsky PM, Gadek JE (1986) Lung neutrophils in the adult respiratory distress syndrome. Clinical and pathophysiologic significance. Am Rev Respir Dis 133:218Google Scholar
  32. 32.
    Wewers MD, Herzyk DJ, Gadek JE (1988) Alveolar fluid neutrophil elastase activity in the adult respiratory distress syndrome is complexed to alpha-2-macroglobulin. J Clin Invest 82:1260PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Jochum
    • 1
  • A. Dwenger
    • 2
  • W. Machleidt
    • 3
  1. 1.Department of Clinical Chemistry and Clinical Biochemistry, Surgical Clinic, CityUniversity of MunichMunich 2Germany
  2. 2.Department of Clinical BiochemistryHannover Medical SchoolHannover 61Germany
  3. 3.Institute of Physiological Chemistry, Physical Biochemistry and Cell BiologyUniversity of MunichMunich 2Germany

Personalised recommendations