Large Lakes pp 81-106 | Cite as

On Internal Seiches and Noisy Current Fields—Theoretical Concepts Versus Observations

  • M. Bohle-Carbonell
  • David van Senden
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)


Basin modes or “seiches” are often used to analyze flow fields in lakes. In the following chapter, the reliability of the basin mode concept is investigated for large lakes. Linearity and coherence in space and time are the necessary prerequisites for any flow field to be understood as composed of basin modes. A method for estimating the degree of basin mode character is applied to data from Lake Geneva. The data are analyzed for temporal and spatial coherences. The internal flow field of Lake Geneva is shown to not be of basin mode character, but rather it is composed of local sequences of transient current events. It is concluded that these features are not singular to Lake Geneva but that they are typical for large lakes.


Flow Field Gravity Wave Internal Wave Basin Scale Internal Gravity Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bäuerle, E. 1981. Die Eigenschwingungen abgeschlossener, zweigeschichteter Wasserbecken bei variabler Bodentopography. Berichte Institut für Meereskunde, Kiel, No. 85, 77 pp.Google Scholar
  2. Bäuerle, E. 1985. Internal free oscillations in the Lake Geneva. Ann. Geophysicae. 3: 199–206.Google Scholar
  3. Bohle-Carbonell, M. 1986a. Hydrodynamik des Genfer Sees-Gleichgewichte und charakterisierende Grössen. Ecole Polytechnique Fédérale de Lausanne (Switzerland), Doctoral Dissertation No. 611, Vol. 1, 235 pp.; Vol. 2, 133 pp.Google Scholar
  4. Bohle-Carbonell, M. 1986b. Currents in Lake Geneva. Limnol. Oceanogr. 31 (6): 1255–1266.CrossRefGoogle Scholar
  5. Bohle-Carbonell, M., and Lemmin, U. 1988. Observations on non-linear current fields in the Lake Geneva. Ann. Geophysicae. 6 (1): 89–99.Google Scholar
  6. Carton, J.A. 1984. Coastal circulation caused by an isolated storm. J. Physical Oceanography 14 (1): 114–124.CrossRefGoogle Scholar
  7. Csanady, G.T. 1975. Hydrodynamics of large lakes. Ann. Rev. Fluid Mech. 7: 357–386.CrossRefGoogle Scholar
  8. Csanady, G.T. 1982. Circulation in the Coastal Ocean. Reidel, 279 pp.Google Scholar
  9. CIPEL. 1984. Le Léman-Synthèse des travaux de la Commission internationale pour la protection des eaux du Leman contre la pollution 1957–1982. Secrétariat de la CIPEL, Lausanne (CH), 650 pp.Google Scholar
  10. Ganter, Y. 1978. Contribution a l’étude des brises du Lac Léman. Rapp. de Travail de l’Institut Suisse de Meteorologie No. 83, 43 pp.Google Scholar
  11. Halbfass, W. 1910. Gibt es im Madüsee Temperaturseiches? Int. Rev. Hydrobiology Hydrogr. 3: 1–40.CrossRefGoogle Scholar
  12. Halpern, D. and Pillsbury, R.D., 1976. Influence of surface waves on subsurface current measurement in shallow water. Limnol. Oceanogr. 21 (3): 1039–1049.Google Scholar
  13. Hamblin, P.F. 1982. On the free surface oscillation of Lake Ontario. Limnol. Oceanogr. 27 (6): 1039–1049.CrossRefGoogle Scholar
  14. Hollan, E. 1984. Strömungen im Bodensee. Wasserwirtschaft 74 (7/8): 366–373.Google Scholar
  15. Horn, W, Mortimer, C.H., and Schwab, D.J. 1986. Wind induced internal seiches in Lake of Zürich observed and modelled. Limnol. Oceanogr. 31, 1232–1254.CrossRefGoogle Scholar
  16. Kanari, S. 1975. The long-period internal waves in Lake Biwa. Limnol. Oceanogr. 20 (4), 544–553.CrossRefGoogle Scholar
  17. Kielman, J., Willebrandt, J., Holtoroff, J., and Brockmann, C. 1979. POWER1: Spectralprogramm für bivariate reelle Messreihen. Inst. f. Meereskunde, Kiel.Google Scholar
  18. Krauss, W. 1973. Methods and Results of Theoretical Oceanography I: Dynamics of the Homogeneous and Quasihomogeneous Ocean. Gebrüder Bornträger, Stuttgart, 302 pp.Google Scholar
  19. Krauss, W. 1979. Inertial waves in an infinite channel of rectangular cross section. Deutsche Hydrographische Zeitschrift 32: 248–266.CrossRefGoogle Scholar
  20. Kuhn, H., Quadfasel, D., Scott, E, and Zenk, W. 1980. On simultaneous measurements with rotor, wing and acoustic current meters, moored in shallow water. Deutsch. Hydrogr. Zeitschrift 33: 1–18.CrossRefGoogle Scholar
  21. Kundu, P.K. 1984. Generation of coastal inertial oscillations by time-varying wind. J. Physical Oceanography 14 (12): 1901–1913.CrossRefGoogle Scholar
  22. Kundu, P.K., Chao, S.-Y., and McCreary, J.P. 1983. Transient coastal currents and inertiogravity waves. Deep Sea Res. 30 (10A): 1059–1082.CrossRefGoogle Scholar
  23. LeFranc, G. 1923. Les vents du Leman. Lib. P. Pelissier, Thonon les Bains, France, 46 pp.Google Scholar
  24. Mortimer, C.H. 1951. The use of models in the study of water movements in lakes. Proc. int. Ass. Limnology 11: 254–260.Google Scholar
  25. Mortimer, C.H. 1974. Lake hydrodynamics. Mitt. Intern. Verein. Limnologie 20: 124–197.Google Scholar
  26. Mortimer, C.H., Perrinjaquet, C., and Bohle-Carbonell, M. 1984. Internal oscillatory responses of Lac Léman to wind impulses during 1977/1978 compared with waves in rotating channel models. Ecole polytechnique Fédéral de Lausanne. Comm. du Lab. d’hydraulique No. 50, 89 pp.Google Scholar
  27. Mysak, L.A. 1984. Topographic waves in lakes. In: Hutter, K. (Ed.), Hydrodynamics of Lakes. Springer-Verlag, WIEH, p. 210–234.Google Scholar
  28. Mysak, L.A. 1985. Elliptical topographic waves. Geophy. Astrophy. Fluid Dynamics 31: 93–135.CrossRefGoogle Scholar
  29. Nuttal, A.H. 1971. Spectral estimation by means of overlapped FFT processing of windowed data. Naval Underwater Systems Center Report No. 4169, 39 pp.Google Scholar
  30. Pedlosky, J. 1979. Geophysical Fluid Dynamics. Springer-Verlag, New York, 624 pp.Google Scholar
  31. Pnuelli, A., and Pekeris, C.L. 1976. Free tidal oscillations in rotating flat basins of the form of rectangles of sectors of circles. Proc. Roy. Soc. London Ser. A 263: 19–171.Google Scholar
  32. Proudman, J. 1958. A damped Kelvin-wave of general form. J. Marine Research 17: 424–428.Google Scholar
  33. Rao, D.B. 1966. Free gravitational oscillations in rotating rectangular basins. J. Fluid Mechanics 25: 523–555.CrossRefGoogle Scholar
  34. Rao, D.B. 1974. Transient response of shallow enclosed basins using the method of normal modes. Canada Center for Inland Waters, Burlington, Scientific Series No. 38, 29 pp.Google Scholar
  35. Renouard, D.P. 1981. An experimental study of gravity-inertial waves and wind-induced Kelvin-type upwellings in a rotating system. J. Physical Oceanography 11 (8): 1100–1112.CrossRefGoogle Scholar
  36. Schwab, D.J. 1975. A normal mode method for predicting storm surges on a lake. Center for Great Lake Studies, Milwaukee, Special Report No. 20, 51 pp.Google Scholar
  37. Schwab, D.J. 1977. Internal free oscillations in Lake Ontario. Limnol. Oceanography 25: 700–708.CrossRefGoogle Scholar
  38. SFDE. 1954. Les denivellations du Lac Léman. Dep. féd. Postes Chemins de Fer, Communication du service fédéral des eaux No. 40, 103 pp., 18 appendices.Google Scholar
  39. Sirkes, Z. 1987. Surface manifestations of internal oscillations in a highly saline lake (the Dead Sea). Limnol. Oceanogr. 32 (1): 76–82.CrossRefGoogle Scholar
  40. Stange, K. 1979. Angewandte Statistik,Vol. 1. Springer-Verlag, 592 pp.Google Scholar
  41. Stocker, K., Rutter, K., Salvade, G., Trösch, J., and Zamboni, F., 1987. Observation and analysis of internal seiches in the southern basin of Lake of Lugano. Ann.Geophysicae 5B (6): 553–568.Google Scholar
  42. Tietze, K. 1978. Geophysikalische Untersuchungen des Kivusees und seiner ungewöhnlichen Methangaslagerstätte—Schichtung, Dynamik und Gasgehalts des Seewassers. Dissertation, Christian-Albrechts-Universität Kiel, 149 pp.Google Scholar
  43. Thorpe, S.A., 1973. Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness? J. Fluid Mech. 63 (3): 509–527.CrossRefGoogle Scholar
  44. Turcotte, D.L. 1988. Fractals in fluid mechanics. Ann. Rev. Fluid Mech. 20: 5–16.CrossRefGoogle Scholar
  45. Wang, P.D., and Mooers, CH.N.K. 1976. Coastal-trapped waves in a continuously stratified ocean. J. Physical Oceanography 6 (11): 853–863.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • M. Bohle-Carbonell
  • David van Senden

There are no affiliations available

Personalised recommendations