Advertisement

Large Lakes pp 580-591 | Cite as

Lake Trophic Status and the Development of the Clear-Water Phase in Lake Geneva

  • Gérard Balvay
  • Meg Gawler
  • Jean Pierre Pelletier
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

A brief period of very clear water following the spring phytoplankton bloom has been observed in many mesotrophic and eutrophic lakes. For Lake Geneva, data on water transparency from Forel (1895) demonstrate that the phenomenon of a clear-water phase did not exist when the lake was still oligotrophic in the late nineteenth century. Comparable Secchi measurements over the last three decades indicate that the clear-water phase developed along with increasing eutrophication as a result—not of clearer water in June—but of significantly lower transparencies at the time of the spring bloom, which is usually dominated by fast-growing, nanoplanktonic algae. Generally in Lake Geneva, following this spring bloom, the numbers of cyclopoid copepods decline strongly, and the Daphnia populations explode. Severe Si limitation in May was observed in 9 out of the last 14 years. Although the sharp reduction in algal standing crop at this time of year may begin by the loss of diatoms due to nutrient stress, the development of a dramatic clear-water phase is mediated primarily by grazing, and in particular, by the grazing of Daphnia.

Keywords

Secchi Depth Spring Bloom Zooplankton Biomass Cyclopoid Copepod Spring Phytoplankton Bloom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balvay, G. 1984. Premières données sur l’évolution quantitative des entomostracés planctoniques dans le lac Léman. Schweizerische Zeitschrift für Hydrologie 46: 224–229.CrossRefGoogle Scholar
  2. Balvay, G. 1987. Equivalence entre quelques paramètres estimatifs de l’abondance du zooplancton total. Schweizerische Zeitschrift für Hydrologie 49: 75–84.CrossRefGoogle Scholar
  3. Balvay, G., Druart, J.-C., Pelletier, J., Pongratz, E., and Revaclier, R. 1984. Plancton, pp. 261–313 in Le Léman: Synthèse des Travaux de la Commission Internationale pour la Protection des Eaux du Léman contre la Pollution, 1957–1982, Secrétariat de la Commission internationale, Lausanne.Google Scholar
  4. Balvay, G. and Pelletier, J.P. 1988. Evolution quantitative du plancton durant la phase d’eutrophisation accélérée du lac Léman (Suisse-France). Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 23: 474–481.Google Scholar
  5. Bottrell, H.H., Duncan, A., Gliwicz, Z.M., Grygierek, E., Herzig, A., Hillbricht-Ilkowska, A., Kurasawa, H., Larsson, P., and Weglenska, T. 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  6. Bürgi, H.R. and Lehn, H. 1979. Die Langjährige Entwicklung des Phytoplanktons im Bodensee (1965–1975). Int. Gewasser, für den Bodensee , Rep. 23.Google Scholar
  7. Bürgi, H.R., Weber, P., and Bachmann, H. 1985. Seasonal variations in the trophic structure of phyto-and zooplankton communities in lakes in different trophic states. Schweizerische Zeitschrift für Hydrologie 47: 197–224.CrossRefGoogle Scholar
  8. Forel, E.-A. 1895. Le Léman: Monographie Limnologique, Vol. 2. E. Rouge, Lausanne.Google Scholar
  9. Gawler, M., Blanc, P., Druart, J.C., and Pelletier, J.P. 1987. Dynamique de quelques populations majeures du phytoplancton printanier du Lac Léman en relation avec le broutage et les sels nutritifs. Actes du Colloque National du CNRS, Biologie des Populations, Université Claude Bernard 1986, p. 412–419.Google Scholar
  10. Gawler, M., Balvay, G., Blanc, P., Druart, J.-C., and Pelletier, J.P. 1988. Plankton ecology of Lake Geneva: a test of the PEG-model. Archiv für Hydrobiologie 114 (2): 161–174.Google Scholar
  11. Geller, W. 1980. Stabile Zeitmuster in der Planktonsukzession des Bodensees (Uberlinger See). Verhandlungen der Gessellschaft für ökologie 8: 373–382.Google Scholar
  12. Kilham, S.S. 1984. Silicon and Phosphorus growth kinetics and competitive interactions between Stephanodiscus minutus and Synedra sp. Verhandlungen Internationale Vereinigung Limnologie 22: 435–439.Google Scholar
  13. Knisely, K. and Geller, W. 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94.CrossRefGoogle Scholar
  14. Lampert, W. 1985. The role of zooplankton: an attempt to quantify grazing, pp. 54–62 in Lakes Pollution and Recovery, Proceedings of the International Congress of the European Water Pollution Control Association, Rome, 1985.Google Scholar
  15. Lampert, W, Fleckner, W, Rai, H., and Taylor, B.E. 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.CrossRefGoogle Scholar
  16. Lampert, W. and Schober, U. 1978. Das regelmässige Auftreten von Frühjahrs-Algenmaximum und “Klarwasserstadium” im Bodensee als Folge von klimatischen Bedingungen und Wechselwirkungen zwischen Phyto-und Zooplankton. Archiv für Hydrobiologie 82: 364–386.Google Scholar
  17. Lehn, H. 1968. Sichttiefen im Uberlinger See (Bodensee) 1953–1962. Schweizerische Zeitschrift für Hydrologie 30: 67–74.CrossRefGoogle Scholar
  18. Lehn, H. 1973. Phytoplanktonänderungen im Bodensee und einige Folgeprobleme. Verhandlungen der Gesellschaft für ökologie: 225–235.Google Scholar
  19. Monod, R., Blanc, P. and Corvi, C. 1984. Les formes du phosphore, pp. 121–140 in Le Léman: Synthèse des Travaux de la Commission Internationale pour la Protection des Eaux du Léman contre la Pollution, 1957–1982, Secrétariat de la Commission internationale, Lausanne.Google Scholar
  20. Sommer, U. 1985. Comparison between steady state and nonsteady state competition: experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.CrossRefGoogle Scholar
  21. Sommer, U. 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–7.CrossRefGoogle Scholar
  22. Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  23. Tilzer, M.M. 1988. Secchi disk-chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia 162: 163–171.CrossRefGoogle Scholar
  24. Tilzer, M.M., Sommer, U., Geller, W, Eckmann, R., and Stabel, H.-H. 1985. Untersuchungen zum Stoffhaushalt in der Freiwasserzone des Bodensees/Uberlinger See. Sonderdruck aus “gwf-wasser/abwasser” 126, 9: 461–466.Google Scholar
  25. Uhlmann, D. 1961. Uber den Einfluss von Planktonorganismen auf ihr Milieu. Int. Rev. ges. Hydrobiol. 46: 115–129.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Gérard Balvay
  • Meg Gawler
  • Jean Pierre Pelletier

There are no affiliations available

Personalised recommendations