Skip to main content

Bacterial Cycling of Matter in the Pelagic Zone of Aquatic Ecosystems

  • Chapter
Large Lakes

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

This paper discusses the role of bacteria in influencing the patterns of organic and inorganic matter fluxes in pelagic ecosystems of lakes and oceans. We find that the ecological and biogeochemical roles of bacteria vary greatly in response to the nutrient and trophic scenarios in the bacterium’s microenvironment. We suggest that, in order to understand how bacteria influence nutrient dynamics in pelagic ecosystems, we need a conceptual framework which takes into account the interactions among bacteria, phytoplankton, and protozoa in a microenvironmental context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammerman, J.W. and Azam, F. 1985. Bacterial 5′-nucleotidase in aquatic ecosystems: anovel mechanism of phosphorus regeneration. Science 227: 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, A., Larsson, U., and Hagström, A. 1985. Size selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 23: 99–106.

    CAS  Google Scholar 

  • Azam, E. and Ammerman, J.W. 1984. In: M.J.R. Fasham (editor), Flows of Energy and Materials in Marine Ecosystems. Plenum Publishing, New York, p. 345–360.

    Google Scholar 

  • Azam, F. and Cho, B.C. 1987. In: M. Fletcher (editor), Ecology of Microbial Communities. Cambridge University Press, Cambridge, p. 261–281.

    Google Scholar 

  • Azam, E, Cowles, T., Banse, K., Osborne, J., Harrison, P.J., and Kiinedy, C.A. 1984. Free-living pelagic bacterioplankton: Sink or link in a marine foodweb? Eos 65: 926.

    Google Scholar 

  • Azam, E, Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.-A., and Thingstad, E. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Azam, E and Hodson, R.E. 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22: 492–501.

    Article  CAS  Google Scholar 

  • Azam, E. and Hodson, R.E. 1981. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Mar. Ecol. Prog. Ser. 6: 213–222.

    Article  CAS  Google Scholar 

  • Azam, E. and Holm-Hansen, O. 1973. Use of tritiated substrates in the study of heterotrophy in seawater. Mar. Biol. 23: 191–196.

    Article  CAS  Google Scholar 

  • Bacon, M., Huh, C., Fleer, P. and Deuser, W. 1985. Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Deep-Sea Res. 32: 273–286.

    Article  CAS  Google Scholar 

  • Berman, T. 1975. Size fractionation of natural aquatic populations associated with autotrophie and heterotrophic carbon uptake. Mar. Biol. 33: 215–220.

    Article  Google Scholar 

  • Bratbak, G. and Thingstad, T. 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model ecosystem with both competition and commensalism. Mar. Ecol Prog. Ser. 25: 23–30.

    Article  Google Scholar 

  • Chin-Leo, G. and Kirchman, D.L. 1988. Estimation of bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl. Environ. Microbiol. 54: 1934–1939.

    PubMed  CAS  Google Scholar 

  • Cho, B.C. and Azam, E 1987. Significance of bacterioplankton biomass in the epipelagic and mesopelagic zone in the Pacific Ocean. EOS 68: 1729.

    Google Scholar 

  • Cho, B.C. and Azam, E. 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332: 441–443.

    Article  CAS  Google Scholar 

  • Cho, B.C. and Azam, E. 1988a. Heterotrophic bacterioplankton production measurement by tritiated thymidine incorporation method. Ergeb. Limnol. 31: 153–162.

    Google Scholar 

  • Cole, J., Findlay, S., and Pace, M. 1988. Bacterial production in fresh and salt-water ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Article  Google Scholar 

  • Ducklow, H. 1983. The production and fate of bacteria in the oceans. BioScience 33: 494–501.

    Article  Google Scholar 

  • Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Article  Google Scholar 

  • Fuhrman, J.A., Ammerman, J.W., and Azam, E 1980. Bacterioplankton in the coastal euphotic zone: Distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.

    Article  Google Scholar 

  • Fuhrman, J.A. and Azam, E. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Applied Environmental Microbiology 39: 1085–1095.

    CAS  Google Scholar 

  • Fuhrman, J.A. and Azam, E. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Article  Google Scholar 

  • Goldman, J.G., Caron, D.A., and Dennett, M.R. 1987. Nutrient cycling in a microflagellate food chain: IV. Phytoplankton-microflagellate interactions. Mar. Ecol. Prog. Ser. 38: 75–87.

    Article  CAS  Google Scholar 

  • Hagström, A., Larsson, U., Hörstedt, P., and Normark, S. 1979. Frequency of dividing cells, a new approach to the determination of bacterial cell growth rates in aquatic environments. Appl. Environ. Microbiol. 37: 805–812.

    PubMed  Google Scholar 

  • Harrison, W, Azam, E, Renger, E., and Eppley, R. 1977. Some experiments on phosphate assimilation by coastal marine plankton. Mar. Biol. 40: 9–18.

    Article  CAS  Google Scholar 

  • Hobbie, J.E., Daley, R.J., and Jasper, S. 1977. Use of Nuclepore filters for counting bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  • Hollibaugh, J.T. and Azam, E. 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104–1116.

    Article  CAS  Google Scholar 

  • Hollibaugh, J.T., Carruthers, A., Fuhrman, J.A., and Azam, E. 1980. Cycling of organic nitrogen in marine plankton communities studied in enclosed water columns. Mar. Biol. 59: 15–21.

    CAS  Google Scholar 

  • Jacobsen, T. and Azam, E 1984. The role of bacteria in copepod fecal pellet decomposition: colonization, growth rates and mineralization. Bull. Mar. Sci. 35: 495–502.

    Google Scholar 

  • Moriarty, D. 1986. Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis. Adv. Microb. Ecol. 9: 245–292.

    CAS  Google Scholar 

  • Parsons, T. R. and Strickland, J. D. H. 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8: 211–222.

    Google Scholar 

  • Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. BioScience 24: 499–504.

    Article  Google Scholar 

  • Riemann, B. and Sendergaard, M. 1986. Carbon Dynamics in Eutrophic, Temperate Lakes. Elsevier Sci. Publishers, New York, 284 pp.

    Google Scholar 

  • Sherr, B.F., Sherr, E.F. and Fallon, R.D. 1987. Use of monodispersed fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53: 958–965.

    PubMed  CAS  Google Scholar 

  • Sherr, B.F., Sherr, E.F., Hopkinson, C.S., 1988. Trophic interactions within pelagic microbial communities. Indications of feedback regulation of carbon flow. Hydrobiologia. 159: 19–26.

    Article  Google Scholar 

  • Simon. M., 1987. Biomass and production of small and large free-living and attached bacteria in Lake Constance. Limnol. Oceanogr. 32: 591–607.

    Article  CAS  Google Scholar 

  • Simon, M. and Azam, E. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    Article  CAS  Google Scholar 

  • Simon, M. and Tilzer, M. 1987. Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J. Plank. Res. 9: 535–552.

    Article  Google Scholar 

  • Stevenson, L. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4: 127–133.

    Article  Google Scholar 

  • Suttle, C.A., Fuhrman, J.A., and Capone, D.G. 1987. Rapid ammonium turnover times and concentration dependent resource partitioning in planktonic communities measured using 13N. Eos 68: 1760.

    Google Scholar 

  • Wheeler, P.A. and Kirchman, D.L. 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr. 31: 998–1009.

    Article  CAS  Google Scholar 

  • Wright, R. and Hobbie, J.E. 1965. The uptake of organic solutes in lake water. Limnol. Oceanogr. 10: 22–28.

    Article  CAS  Google Scholar 

  • Wright, R. and Hobbie, J.E. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.

    Article  CAS  Google Scholar 

  • Williams, P.J.IeB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic foodweb. Kieler Meeresforsch 5: 1–28.

    Google Scholar 

  • Zimmermann, R. and Meyer-Reil, L.-A. 1974. A new method for fluorescence staining of bacterial populations on membrane filters. Kieler Meeresforsch 30: 24–26.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azam, F., Cho, B.C., Smith, D.C., Simon, M. (1990). Bacterial Cycling of Matter in the Pelagic Zone of Aquatic Ecosystems. In: Tilzer, M.M., Serruya, C. (eds) Large Lakes. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84077-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84077-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84079-1

  • Online ISBN: 978-3-642-84077-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics