Large Lakes pp 477-488 | Cite as

Bacterial Cycling of Matter in the Pelagic Zone of Aquatic Ecosystems

  • F. Azam
  • B. C. Cho
  • D. C. Smith
  • M. Simon
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)


This paper discusses the role of bacteria in influencing the patterns of organic and inorganic matter fluxes in pelagic ecosystems of lakes and oceans. We find that the ecological and biogeochemical roles of bacteria vary greatly in response to the nutrient and trophic scenarios in the bacterium’s microenvironment. We suggest that, in order to understand how bacteria influence nutrient dynamics in pelagic ecosystems, we need a conceptual framework which takes into account the interactions among bacteria, phytoplankton, and protozoa in a microenvironmental context.


Particulate Organic Matter Particulate Organic Carbon Bacterial Production Dissolve Organic Matter Euphotic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammerman, J.W. and Azam, F. 1985. Bacterial 5′-nucleotidase in aquatic ecosystems: anovel mechanism of phosphorus regeneration. Science 227: 1338–1340.PubMedCrossRefGoogle Scholar
  2. Andersson, A., Larsson, U., and Hagström, A. 1985. Size selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 23: 99–106.Google Scholar
  3. Azam, E. and Ammerman, J.W. 1984. In: M.J.R. Fasham (editor), Flows of Energy and Materials in Marine Ecosystems. Plenum Publishing, New York, p. 345–360.Google Scholar
  4. Azam, F. and Cho, B.C. 1987. In: M. Fletcher (editor), Ecology of Microbial Communities. Cambridge University Press, Cambridge, p. 261–281.Google Scholar
  5. Azam, E, Cowles, T., Banse, K., Osborne, J., Harrison, P.J., and Kiinedy, C.A. 1984. Free-living pelagic bacterioplankton: Sink or link in a marine foodweb? Eos 65: 926.Google Scholar
  6. Azam, E, Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.-A., and Thingstad, E. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  7. Azam, E and Hodson, R.E. 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22: 492–501.CrossRefGoogle Scholar
  8. Azam, E. and Hodson, R.E. 1981. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Mar. Ecol. Prog. Ser. 6: 213–222.CrossRefGoogle Scholar
  9. Azam, E. and Holm-Hansen, O. 1973. Use of tritiated substrates in the study of heterotrophy in seawater. Mar. Biol. 23: 191–196.CrossRefGoogle Scholar
  10. Bacon, M., Huh, C., Fleer, P. and Deuser, W. 1985. Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Deep-Sea Res. 32: 273–286.CrossRefGoogle Scholar
  11. Berman, T. 1975. Size fractionation of natural aquatic populations associated with autotrophie and heterotrophic carbon uptake. Mar. Biol. 33: 215–220.CrossRefGoogle Scholar
  12. Bratbak, G. and Thingstad, T. 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model ecosystem with both competition and commensalism. Mar. Ecol Prog. Ser. 25: 23–30.CrossRefGoogle Scholar
  13. Chin-Leo, G. and Kirchman, D.L. 1988. Estimation of bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl. Environ. Microbiol. 54: 1934–1939.PubMedGoogle Scholar
  14. Cho, B.C. and Azam, E 1987. Significance of bacterioplankton biomass in the epipelagic and mesopelagic zone in the Pacific Ocean. EOS 68: 1729.Google Scholar
  15. Cho, B.C. and Azam, E. 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332: 441–443.CrossRefGoogle Scholar
  16. Cho, B.C. and Azam, E. 1988a. Heterotrophic bacterioplankton production measurement by tritiated thymidine incorporation method. Ergeb. Limnol. 31: 153–162.Google Scholar
  17. Cole, J., Findlay, S., and Pace, M. 1988. Bacterial production in fresh and salt-water ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.CrossRefGoogle Scholar
  18. Ducklow, H. 1983. The production and fate of bacteria in the oceans. BioScience 33: 494–501.CrossRefGoogle Scholar
  19. Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.CrossRefGoogle Scholar
  20. Fuhrman, J.A., Ammerman, J.W., and Azam, E 1980. Bacterioplankton in the coastal euphotic zone: Distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.CrossRefGoogle Scholar
  21. Fuhrman, J.A. and Azam, E. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California. Applied Environmental Microbiology 39: 1085–1095.Google Scholar
  22. Fuhrman, J.A. and Azam, E. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.CrossRefGoogle Scholar
  23. Goldman, J.G., Caron, D.A., and Dennett, M.R. 1987. Nutrient cycling in a microflagellate food chain: IV. Phytoplankton-microflagellate interactions. Mar. Ecol. Prog. Ser. 38: 75–87.CrossRefGoogle Scholar
  24. Hagström, A., Larsson, U., Hörstedt, P., and Normark, S. 1979. Frequency of dividing cells, a new approach to the determination of bacterial cell growth rates in aquatic environments. Appl. Environ. Microbiol. 37: 805–812.PubMedGoogle Scholar
  25. Harrison, W, Azam, E, Renger, E., and Eppley, R. 1977. Some experiments on phosphate assimilation by coastal marine plankton. Mar. Biol. 40: 9–18.CrossRefGoogle Scholar
  26. Hobbie, J.E., Daley, R.J., and Jasper, S. 1977. Use of Nuclepore filters for counting bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.PubMedGoogle Scholar
  27. Hollibaugh, J.T. and Azam, E. 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104–1116.CrossRefGoogle Scholar
  28. Hollibaugh, J.T., Carruthers, A., Fuhrman, J.A., and Azam, E. 1980. Cycling of organic nitrogen in marine plankton communities studied in enclosed water columns. Mar. Biol. 59: 15–21.Google Scholar
  29. Jacobsen, T. and Azam, E 1984. The role of bacteria in copepod fecal pellet decomposition: colonization, growth rates and mineralization. Bull. Mar. Sci. 35: 495–502.Google Scholar
  30. Moriarty, D. 1986. Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis. Adv. Microb. Ecol. 9: 245–292.Google Scholar
  31. Parsons, T. R. and Strickland, J. D. H. 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8: 211–222.Google Scholar
  32. Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. BioScience 24: 499–504.CrossRefGoogle Scholar
  33. Riemann, B. and Sendergaard, M. 1986. Carbon Dynamics in Eutrophic, Temperate Lakes. Elsevier Sci. Publishers, New York, 284 pp.Google Scholar
  34. Sherr, B.F., Sherr, E.F. and Fallon, R.D. 1987. Use of monodispersed fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53: 958–965.PubMedGoogle Scholar
  35. Sherr, B.F., Sherr, E.F., Hopkinson, C.S., 1988. Trophic interactions within pelagic microbial communities. Indications of feedback regulation of carbon flow. Hydrobiologia. 159: 19–26.CrossRefGoogle Scholar
  36. Simon. M., 1987. Biomass and production of small and large free-living and attached bacteria in Lake Constance. Limnol. Oceanogr. 32: 591–607.CrossRefGoogle Scholar
  37. Simon, M. and Azam, E. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.CrossRefGoogle Scholar
  38. Simon, M. and Tilzer, M. 1987. Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J. Plank. Res. 9: 535–552.CrossRefGoogle Scholar
  39. Stevenson, L. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4: 127–133.CrossRefGoogle Scholar
  40. Suttle, C.A., Fuhrman, J.A., and Capone, D.G. 1987. Rapid ammonium turnover times and concentration dependent resource partitioning in planktonic communities measured using 13N. Eos 68: 1760.Google Scholar
  41. Wheeler, P.A. and Kirchman, D.L. 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr. 31: 998–1009.CrossRefGoogle Scholar
  42. Wright, R. and Hobbie, J.E. 1965. The uptake of organic solutes in lake water. Limnol. Oceanogr. 10: 22–28.CrossRefGoogle Scholar
  43. Wright, R. and Hobbie, J.E. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.CrossRefGoogle Scholar
  44. Williams, P.J.IeB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic foodweb. Kieler Meeresforsch 5: 1–28.Google Scholar
  45. Zimmermann, R. and Meyer-Reil, L.-A. 1974. A new method for fluorescence staining of bacterial populations on membrane filters. Kieler Meeresforsch 30: 24–26.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • F. Azam
  • B. C. Cho
  • D. C. Smith
  • M. Simon

There are no affiliations available

Personalised recommendations