Large Lakes pp 288-315 | Cite as

Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/Abiotic Interactions

  • Kerry Kelts
  • Michael Talbot
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)


Primary, diagenetic, and detrital carbonates are common in the sediments of large lakes. Their location, mineralogy, geochemistry, and stable isotopic composition may provide specific information on a lake’s chemical and environmental history. Analyses of such archive sequences can also provide a proxy record of biotic/abiotic interactions within a lake, and supply information on the magnitude and rate of environmental change within a lacustrine system. Detrital carbonates can be used to map sources of clastic input and resedimentation processes. Surface and littoral precipitates may record seasonal productivity and temperature changes, as well as changing water composition. In isothermal settings, the carbonate shells of benthic organisms can be used to monitor variations in bottom-water isotopic composition.

Within anoxic sediments, early formed diagenetic carbonates carry carbon isotopic signatures reflecting the intensity of bacterial degradation of organic matter, chiefly via sulfate reduction or methanogenesis. Their oxygen-18 composition reflects the composition of the bottom waters during the time of host sediment accumulation.

Following an example from the Quaternary sediments of crater Lake Bosumtwi, Ghana, we illustrate how sequential isotopic changes in primary and diagenetic carbonates document periods of hydrological surplus and deficit.


Isotopic Composition Carbon Isotope Oxygen Isotope Dissolve Inorganic Carbon Lake Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell, P.I. 1982. Paleoclimates at Lake Turkana, Kenya, from oxygen isotope ratios of gastropod shells. Nature 297: 321–323.CrossRefGoogle Scholar
  2. Abell, P.I. 1985. Oxygen isotope ratios in modern African gastropod shells: A data base for paleoclimatology. Chem. Geol. (Isot. Geosci. Sect.) 58: 83–193.CrossRefGoogle Scholar
  3. Anderson, T.F. and Arthur, M.A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. Soc. Econ. Pal. Min. Short Course, No. 10, 1–151.Google Scholar
  4. Bahrig, B. 1988. Paleoenvironmental information from deep water siderite: Lake of Lach, W. Germany. In: K. Kelts, A Fleet, and M. Talbot, (eds.), Lacustrine Petroleum Source Rocks, Geol. Soc. London, Spec. Publ. 40: 160–168.Google Scholar
  5. Bahrig, B. 1989. Stable isotope composition of siderite as an indicator of the paleoenvironmental history of oil shale lakes. In: M. Talbot and K. Kelts (eds.), Paleoenvironmental Signals in Lacustrine Sequences: Palaeogeogr., Palaeoclim., Palaeoecol (in press).Google Scholar
  6. Beadle, L.C. 1981. The Inland Waters of Tropical Africa: An Introduction to Tropical Limnology. Longman, London. 433 pp.Google Scholar
  7. Begin, Z.B., Ehrlich, A., Nathan, Y. 1974. Lake Lisan, the Pleistocene Precursor of the Dead Sea. Bull. Geol. Survey, Israel No. 63, 30 pp.Google Scholar
  8. Binkley, K.L, Wilkinson, B.H., and Owen, R.M. 1980. Vadose beachrock cementation along a southeastern Michigan marl lake. J. Sediment. Petrol. 50: 953–962.Google Scholar
  9. Blatt, H., Middleton, G., and Murray R. 1980. Origin of Sedimentary Rocks. Prentice-Hall, New York, 782 pp.Google Scholar
  10. Buchardt, B. and Fritz, P. 1980. Environmental isotopes as environmental and climatological indicators. In: P. Fritz and J. Ch. Fontes, (eds.), Handbook of Environmental Isotope Geochemistry: V.1, Terrestrial Environment. Elsevier, Amsterdam, p. 473–504.Google Scholar
  11. Casanova, J. 1986a. East African Rift stromatolites. In: L.E. Frostick, R. Renaut, I. Reid, and J. Tiercelin, (eds.), Sedimentation in the African Rifts. Geol. Soc. London, Special Publ. No. 25, p. 201–210.Google Scholar
  12. Casanova, J. 1986b. La saisonnalit climatique au cours des optimum lacustres de l’est Africain et la rhythmicité de constructions stromatolitiques: Exemple du bassin Natrun-Magadi au Pliestocene terminal. In: Changements Globaux en Afrique durant le Quaternaire-Passé-Présent-Futur. INQUA-ASEQUA Symp., Editions de I’ORSTOM, Paris, p. 57–60.Google Scholar
  13. Casanova, J. 1987. In: Tiercelin, J.-J. et al., Le Demi-graben de Baringo-Bogoria, Rift Gregory, Kenya. Bull. Centre. Rech. Expl. Prod. Elf. Aquitaine No. 11/2, p. 181–540.Google Scholar
  14. Claypool, G. and Kaplan, I. 1974. The origin and distribution of methane in sediments. In: I. Kaplan (ed.), Natural Gases in Marine Sediments. Plenum, New York, pp. 99–139.Google Scholar
  15. Cohen, A.S. and Thouin, C. 1987. Nearshore carbonate deposits in Lake Tanganyika. Geology 15: 414–418.CrossRefGoogle Scholar
  16. Craig, H. 1975. Lake Tanganyika Geochemical and Hydrographic Study: 1973 Expedition. Scripps Institute of Oceanography Report 75–5, 83 pp.Google Scholar
  17. Dean, W.E. 1981. Carbonate Minerals and Organic Matter in Sediments of Modern North Temperate Hardwater Lakes. Soc. Econ. Pal. Min. Spec. Publ. No. 31, p. 213–231.Google Scholar
  18. Dean, W.E. and Fouch, T.D. 1983. Lacustrine Environment. In: P. Scholle, D. Bebout, and C. Moore (eds.), Carbonate Depositional Environments. Amer. Assoc. Petrol. Geol. Memoir No. 33, p. 97–130.Google Scholar
  19. Degens, E.T., and Kurtman, F. 1978. The Geology of Lake Van. M.T.A. Press, Ankara, 97 pp.Google Scholar
  20. Deines, P. 1980. The isotopic comoposition of reduced organic carbon. In: P. Fritz and J.C. Fontes (eds.), Handbook of Environmental Isotope Geochemistry, V. 1. Elsevier, Amsterdam, p. 329–406.Google Scholar
  21. Dixit, P.C. 1984. Pleistocene lacustrine ridged oncolites from the Lake Manyara area, Tanzania, East Africa. Sediment. Geology 39: 53–62.CrossRefGoogle Scholar
  22. Eardley, A.J. 1938. Sediments of great Salt Lake, Utah. Bull. Am. Ass. Petrol. Geol. 22: 1305–1411.Google Scholar
  23. Eicher, U. 1987. Die Spätglazialen sowie die früpostglacialen Klimaverhältnisse im Bereiche der Alpen: Sauerstoffisotopenkurven kalkhaltiger. Geographica Helvetica 2: 99–104.Google Scholar
  24. Eicher, U. and Siegenthaler, U. 1976. Palynological and oxygen isotope investigations on late-Glacial sediment cores from Swiss lakes. Boreas 5: 109–117.CrossRefGoogle Scholar
  25. Eugster, H.P., and Hardie, L.A. 1978. Saline Lakes. In: A. Lerman (ed.) Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York, p. 237–293.Google Scholar
  26. Eugster, H.P. and Kelts, K. 1983. Lacustrine chemical sediments. In: A.S. Goudie and K. Pye (eds.), Chemical Sediments and Geomorphology. Academic Press, London, p. 321–368.Google Scholar
  27. Faure, G. 1986. Principles of Isotope Geology. Wiley, New York, 486 pp.Google Scholar
  28. Fontes, J.C., Maglione, G., and Roche, M.A. 1970. Elements d’hydrologie isotopique dans le bassin du lac Tchad. In: Peaceful Uses of Atomic Energy in Africa. IAEA, Vienna, p. 209–222.Google Scholar
  29. Fritz, P., Anderson, T.W., and Leqis, C.F.M. 1975. Late Quaternary climatic trends and history of Lake Erie from stable isotope studies. Science 190: 267–269.Google Scholar
  30. Fritz, P. and Fontes, J. Ch. (eds.). 1980. Handbook of Environmental Isotope Geochemistry: V. 1, Terrestrial Environment. Elsevier, Amsterdam, 690 pp.Google Scholar
  31. Fritz, P. and Fontes, J. Ch. (eds). 1986. Handbook of Environmental Isotope Geochemistry: V. 2, The Terrestrial Environment B. Elsevier, Amsterdam, 557 pp.Google Scholar
  32. Fritz, P., Morgan, A.V., Eicher, U., and McAndrews, J.H. 1987. Stable isotope, fossil Coleoptera and pollen stratigraphy in Late Quaternary sediments from Ontario and New York State. Palaeogeogr. Palaeoclim. Palaeoecol. 58: 183–202.CrossRefGoogle Scholar
  33. Fritz, P. and Poplawski, S. 1974. Wuyuting 18O and 13C in the shells of freshwater molluscs and their environment. Earth and Planet Sci. Lett. 24: 91–98.CrossRefGoogle Scholar
  34. Gat, J.R. 1981. Lakes. In: J.R. Gat and R. Gonfiantioni (eds.), Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. IAEA Technical Report No. 210, Vienna, p. 203–221.Google Scholar
  35. Gat, J.R. 1984. The stable isotope composition of Dead Sea waters. Earth Planet. Sci. Letters 71: 361–376.CrossRefGoogle Scholar
  36. Gilbert, G.K., 1890. Lake Bonneville. Monograph U.S. Geol. Surv., No. 1, 270 pp.Google Scholar
  37. Gonfiantini, R., 1986. Environmental isotopes in lake studies. In: P. Fritz and J.C. Fontes (eds.), Handbook of Environmental Isotope Geochemistry: V. 2, The Terrestrial Environment B. Elsevier, Amsterdam, p. 113–168.Google Scholar
  38. Gonfiantini, R., Zuppi, G.M., Eccles, D.H., and Ferro, W. 1979. Isotope investigations of Lake Malawi. In: Isotopes in Lake Studies. IAEA, Vienna, p. 195–203.Google Scholar
  39. Haberyan, K.A. 1987. Fossil diatoms and the paleolimnology of Lake Rukwa, Tanzania. Freshwater Biol. 17: 429–436.CrossRefGoogle Scholar
  40. Haberyan, K.A. and Hecky, R.E. 1987. The late Pleistocene and Holocene stratigraphy and paleoclimatology of Lakes Kivu and Tanganyika. Palaeogeogr. Palaeoclim. Palaeoecol. 61: 169–197.CrossRefGoogle Scholar
  41. Hanselmann, K. 1986. Microbially mediated processes in environmental chemistry: Lake sedimenta as model systems. Chimia 40: 146–159.Google Scholar
  42. Hardie, L.A., Smoot, J.P., and Eugster, H.P. 1978. Saline Lakes and Their Deposits: A Sedimentological Approach. Spec. Pubis. Int. Ass. Sediment. No. 2, p. 7–41.Google Scholar
  43. Hecky, R.E. 1978. The Kivu-Tanganyika basin: the last 14,000 years. Pol. Arch. Hydrobiol. 25: 159–165.Google Scholar
  44. Hecky, R.E. and Degens, E.T. 1973. Late Pleistocene-Holocene chemical stratigraphy and paleolimnology of the Rift Valley lakes of central Africa. Woods Hole Oceanogr. Inst. Tech. Rep. WHOI 73–28, unpubl. ms.Google Scholar
  45. Hecky, R.E., and Kling, H.J. 1987. Phytoplankton ecology of the great laeks in the rift valleys of Central Africa. Ergebn. Limnol. 25: 197–228.Google Scholar
  46. Herczeg, A. and Fairbanks, R. 1987. Anomalous carbon isotope fractionation between atmospheric CO, and dissolved inorganic carbon induced by intense photosynthesis. Geochim. Cosmochim. Acta. 51: 895–899.CrossRefGoogle Scholar
  47. Hesse, R. 1986. Early diagenetic pore water/sediment interaction: modern offshore basins. Geosci. Canada 13: 165–196.Google Scholar
  48. Hillaire-Marcel, C. and Casanova, J. 1987. Isotopic hydrology and paleohydrology of the Magadi (Kenya) Natron (Tanzania) basin during the Late Quaternary. Palaeogeogr. Palaeoclim. Palaeoecol. 58: 155–181.CrossRefGoogle Scholar
  49. Hoefs, J. 1987. Stable Isotope Geochemistry. 3rd ed. Springer-Verlag, Berlin, 241 pp.Google Scholar
  50. Hovland, M., Talbot, M.R., Qvale, H., Olaussen, S., Aasberg, L. 1987. Methane-related carbonate cements in pockmarks of the North Sea. J. Sediment. Petrol. 57: 881–892.Google Scholar
  51. Jarrett, R.D., and Malde, H.E. 1987. Paleodischarge of the late Pleistocene Bonneville Flood, Snake River, Idaho, computed from new evidence. Geol. Soc. Amer. Bull. 99: 127–134.CrossRefGoogle Scholar
  52. Katz, A., Koldny, Y. and Nissenbaum, A. 1977. The geochemical evolution of the Pleistocene Lake Lisan-Dead Sea system. Geochim. Cosmochim. Acta 41: 1609–1626.CrossRefGoogle Scholar
  53. Kelts, K. and Hsi’, K.J. 1978. Freshwater carbonate sedimentation. In: Lerman, A. (ed.), Lakes-Chemistry, Geology, Physics. Springer-Verlag, New York, p. 295–323.Google Scholar
  54. Kelts, K., and Shahrabi. M. 1986. Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Palaeogeog. Palaeoclimatol. Palaeoecol. 54: 105–130.CrossRefGoogle Scholar
  55. Kendall, R.L. 1969. The ecological history of the Lake Victoria basin. Ecol. Monogr. 39: 121–176.CrossRefGoogle Scholar
  56. Kuivila, K.M., and Murray, J.W. 1984. Organic matter diagenesis in freshwater sediments: the alkalinity and total CO, balance and methane production in the sediments of Lake Washington. Limnol. Oceanogr. 29: 1218–1230.CrossRefGoogle Scholar
  57. Lister, G. 1988. A 15,000 year isotopic record from Lake Zürich of deglaciation and climatic change in Switzerland. Quat. Res. 29 /2: 232–242.CrossRefGoogle Scholar
  58. Lister, G. In press. Stable isotopes from lacustrine ostracoda as tracers for continental palaeoenvironments. In: J.P. Colin, P. DeDeckker, and J.P. Peypouquet (eds.), Ostracods in Earth Sciences. Elsevier, Amsterdam.Google Scholar
  59. Livingstone, D.A. 1963. Chemical Composition of Rivers and Lakes. U.S. Geol. Surv. Prof. Paper, 440-G, 64 pp.Google Scholar
  60. Livingstone, D.A., and Melack, J.M. 1984. Some lakes of subsaharan Africa. In: E. Taub (ed.), Lakes and Reservoirs: Ecosystems of the World. Elsevier, Amsterdam, 23 p., 467–497.Google Scholar
  61. Magaritz, M., Heller, J. 1980. A desert migration indicator-oxygen isotopic composition of land snail shells. Palaeogeog., Palaeoclimatol., Palaeoecol. 32: 153–162.CrossRefGoogle Scholar
  62. Maley, J. 1986. Fragmentation et reconstitution de la forêt dense humide ouest-africaine au cours du Quaternaire récent: Hypothese sur le rôle des upwellings. In: Changements Globaux en Afrique durant le Quaternaire- Passê-Present-Futur. INQUA-ASEQUA Symp., Editions de l’ORSTOM, Paris, p. 281–283.Google Scholar
  63. Maley, J. and Livingstone, D. 1983. Extension d’un él’afement montagnard dans le sud du Ghana (Afrique de l’ouest) au Pléistocène supérieur et à l’Holocène inférieur: premières données polliniques. Compte Rendu Acad. Sci., Ser. 2, 296: 1287–1292.Google Scholar
  64. McKenzie, J.A. 1982. Carbon-13 cycle in Lake Greifen: A model for restricted ocean basins. In: S.O. Schlanger and M.B. Cita (eds.), Nature and Origin of Cretaceous Carbon Rich Facies. Academic Press, London, p. 197–207.Google Scholar
  65. McKenzie, J.A. 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In: W. Stumm (ed.), Chemical Processes in Lakes. Wiley, New York, p. 99–118.Google Scholar
  66. Müller, G. and Wagner, E. 1978. Holocene Carbonate Evolution in Lake Balaton (Hungary): A Response to Climate and Impact of Man. Int. Assoc. Sediment. Spec. Publ. No. 2, p. 57–81.Google Scholar
  67. Müller, G., Irion, G., and Forstner, U. 1972. Formation and diagenesis of inorganic CaMg Carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.CrossRefGoogle Scholar
  68. Worrier, N-A., and Wallin, B. 1977. A 10,000 year temperature record from Gotland, Sweden. Palaeogeogr. Palaeoclim. Palaeoecol. 21: 113–138.CrossRefGoogle Scholar
  69. Neev, D., and Emery, K.O. 1967. The Dead Sea: Depositional Processes and Environments of Evaporites. Geol. Surv. Israel Bull. No. 41, 147 pp.Google Scholar
  70. Niessen, E 1987. Sedimentologische, geophysikalische und geochemische Untersuchungen zur Entstehung und Ablagerungsgeschichte des Luganersees. Dissertation, ETH-Zürich No. 8354, 180 pp.Google Scholar
  71. Oana, S. and Deevey, E.S. 1960. Carbon-13 in lake waters and its possible bearing on paleolimnology. Amer. Jour. Sci. 258A: 253–272.Google Scholar
  72. Oberhänsli, H. and Allen, P.A. 1987. Stable isotopic signatures of Tertiary lake carbonates, Eastern Ebro Basion, Spain. Palaeogeogr. Palaeoclim. Palaeoecol. 60: 59–75.CrossRefGoogle Scholar
  73. Pika, J. 1983. Zur Isotopenchemie und Mineralogie der Lacustrinen Ablagerungen im Zürichsee und im Schwarzen Meer. Dissertation, ETH-Zurich, NR6182, 232 p.Google Scholar
  74. Rau, G. 1978. Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science 210: 901–902.CrossRefGoogle Scholar
  75. Schidlowski, M. 1987. Application of stable carbon isotopes to early biochemical evolution on earth. Ann Rev. Earth Planet Sci. 15: 47–72.CrossRefGoogle Scholar
  76. Scholl, D.W. 1960. Pleistocene algal pinnacles at Searles Lake, California, J. Sediment. Petrol. 30: 414–431.Google Scholar
  77. Scholl, D.W., and Taft, W.H. 1964. Algae, contributors to the formation of calcareous tufa, Mono Lake, California. J. Sediment. Petrol. 34: 309–319.Google Scholar
  78. Shackleton, N. J. 1967. Oxygen isotope anlyses and Pleistocene temperatures reassessed. Nature 215: 15–17.CrossRefGoogle Scholar
  79. Siegenthaler, U. and Eicher, U. 1986. Stable oxygen and carbon isotopic analyses. In: B. Berglund (ed.), Handbook of Palaeoecology and Palaeohydrology. J. Wiley & Sons, New York, p. 407–422.Google Scholar
  80. Spencer, R.J., Baedecker, M.J., Eugster, H.P., Forester, R.M., Goldhaber, M.B., Jones, B.F., Kelts, K., McKenzie, J., Madsen, D.B., Rettig, S.L., Rubin, M., and Bowser, C.J. 1984. Great Salt Lake and precursors, Utah: the last 30,000 years. Contrib. Mineral. Petrol. 86: 312–334.CrossRefGoogle Scholar
  81. Stabel, H.H. 1986. Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation and nucleation by algae. Limnol. Oceanogr. 31: 1081–1093.CrossRefGoogle Scholar
  82. Stiller, M. and Hutchinson, G.E. 1980. The waters of Merom: a study of Lake Huleh BI. Stable isotopic composition of carbonates of a 54 m core: Paleoclimatic and paleotrophic implications. Arch Hydrobiol. 89: 275–302.Google Scholar
  83. Stiller, M. and Kaufman, A., 1985. Paleoclimatic trends revealed by the isotopic composition of carbonates in Lake Kinneret. Ztschr. Gletscherkunde. Glaz. 21: 79–87.Google Scholar
  84. Stiller, M. and Magaritz, M. 1974. Carbon-13 enriched carbonate in interstitital waters of Lake Kinneret sediments. Limnol. Oceanogr. 849–853.Google Scholar
  85. Stiller, M., Rounick, J.S., and Shasha, S. 1985. Extreme carbon-isotope enrichments in evaporating brines. Nature 316: 434–435.CrossRefGoogle Scholar
  86. Stoffers, P. and Hecky, R.E. 1978. Late Pleistocene-Holocene Evolution of The Kivu-Tanganyika Basin. Spec. Publs. Int. Assoc. Sediment. No. 2, p. 43–55.Google Scholar
  87. Stoffers, P., and Singer, A., 1979. Clay minerals in Lake Mobutu Sese Seko (Lake Albert)-their diagenetic changes as an indicator of the paleoclimate. Geol. Rundschau 68: 1009–1024.CrossRefGoogle Scholar
  88. Street-Perrott, EA. and Harrison, S.P. 1984. Temporal variations in lake levels since 30,000 yr. BP-an index of the global hydrological cycle. In: J. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity. Geophy. Monograph No. 29, Maurice Ewing Series V. 5, p. 118–129.CrossRefGoogle Scholar
  89. Stuiver, M. 1970. Oxygen and carbon isotope ratios of freshwater carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.CrossRefGoogle Scholar
  90. Talbot, M.R. 1988. The origins of lacustrine oil source rocks—Evidence from the lakes of tropical Africa. In: K. Kelts, A. Fleet, and M. Talbot (eds.), Lacustrine Petroleum Source Rocks. Geol. Soc. London, Spec. Publication, p. 26–42.Google Scholar
  91. Talbot, M.R. and Hall, J.B. 1981. Further late Quaternary leaf fossils from Lake Bosumtwi, Ghana. Paleoecology of Africa 13: 83–92.Google Scholar
  92. Talbot, M.R. and Kelts, K. 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14: 912–916.CrossRefGoogle Scholar
  93. Talbot, M.R., Livingstone, D.A., Palmer, P.C., Maley, J., Melack, J.M., Delibrias, G., and Gulliksen, S. 1984. Preliminary results from sediment cores from Lake Bosumtwi, Ghana. Palaeoecology of Africa 16: 173–192.Google Scholar
  94. Talbot, M.R., and Livingstone, D.A. In press. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators. Palaeogeog. Palaeoclimatol. Palaeoecol. Google Scholar
  95. Tiercelin, J.-J., et al., 1987. Le demi-graben de Baringo-Bogoria, Rift Gregory, Kenya. Bull. Centr. Rech. Expl. Prod. Elf. Aquitaine 11: 181–540.Google Scholar
  96. Tietze, K., Geyh, M., Müller, H., Stahl, W, and Wehner, H. 1980. The genesis of the methane in Lake Kivu, Central Africa. Geol. Rundschau 69 /2: 452–472.CrossRefGoogle Scholar
  97. Whiticar, M.J., Faber, E., and Schoell, M. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs acetate fermentation. Geochim. Cosmochim. Acta 50: 693–709.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Kerry Kelts
  • Michael Talbot

There are no affiliations available

Personalised recommendations