Skip to main content

Nigella spp.: In Vitro Culture, Regeneration, and the Formation of Secondary Metabolites

  • Chapter
Medicinal and Aromatic Plants III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 15))

Abstract

The genus Nigella belongs to the family Ranunculaceae and includes about 20 species. Assignation to the genus Nigella changed repeatedly during the last century; some selected species are listed in Table 1. Nigella species are located mainly in the Middle East and the Mediterranean region. A characteristic description of the Nigella species can be found in Tutin et al. 1964, Rechinger 1964, Davis et al. 1965.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Yahya MA (1986) Phytochemical studies of the plants used in traditional medicine of Saudi Arabia. Fitoterapia 57:179–182.

    CAS  Google Scholar 

  • Ansari AA, Osman SM, Subbaram MR (1975) Component acids of minor seeds oils. I. J Oil Technol Assoc 7:26–27.

    CAS  Google Scholar 

  • Atta-Ur Rahman, Malik S, He C, Clardy J (1985a) Isolation and structure determination of nigellicine, a novel alkaloid from the seeds of Nigella sativa. Tetrahedron Lett 26:2759–2762.

    Article  Google Scholar 

  • Atta-Ur Rahman, Malik S, Ahmad S, Chaudhary I, Habib-Ur Rahman (1985b) Nigellimine-N-oxide — a new isoquinoline alkaloid from the seeds of Nigella sativa. Heterocycles 23:953–955.

    Article  Google Scholar 

  • Babayan VK, Kootungal D, Halaby GA (1978) Proximate analysis, fatty acid and amino acid composition of Nigella sativa L. seeds. J Food Technol 43:1314–1315.

    CAS  Google Scholar 

  • Banerjee S, Gupta S (1975a) Morphogenesis in tissue cultures of different organs of Nigella sativa. Physiol Plant 33:185–187.

    Article  Google Scholar 

  • Banerjee S, Gupta S (1975b) Embryoid and plantlet formation from stock cultures of Nigella tissues. Physiol Plant 34:243–245.

    Article  Google Scholar 

  • Banerjee S, Gupta S (1975c) Suspension culture of Nigella sativa. Experientia 31:793–795.

    Article  Google Scholar 

  • Banerjee S, Gupta S (1976) Embryogenesis and differentiation in Nigella sativa leaf callus in vitro. Physiol Plant 38:115–120.

    Article  Google Scholar 

  • Baumert A, Hieke M, Groeger D (1983) N-Methylation of anthranilic acid to N-methylanthranilic acid by cell-free extracts of Ruta graveolens tissue culture. Planta Med 48:258–262.

    Article  PubMed  CAS  Google Scholar 

  • Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol (Suppl) 11A:113–144.

    Google Scholar 

  • Bhaskar KV, Bahadur RB (1983) Effect of semithion on the dividing root tip cells of Nigella sativa L. Indian J Bot 6:103–107.

    CAS  Google Scholar 

  • Binding H, Nehls R, Koch R, Finger J, Mordhorst G (1981) Comparative studies on protoplast regeneration in herbaceous species of the dicotyledoneae class. Z Pflanzenphysiol 101:119–130.

    Google Scholar 

  • Boehm H (1988) Qualitative Aspekte der Bildung von Sekundärstoffen durch pflanzliche Zellkulturen. In: Boehm H (ed) Pflanzliche In-vitro-Systeme für Züchtung und Stoffproduktion. Biol Ges DDR/AG Pflanzl Zell Gewebekult, Halle, pp 71–83.

    Google Scholar 

  • Böse B, Ghosh O, Singh RP (1981) Study on the chemical constituents of seeds of Nigella sativa (Kalajira) — a preliminary note. J Inst Chem (India) 53:273.

    Google Scholar 

  • Brown RH, Boulter D (1973) Amino acid sequence of cytochrome c from Nigella damascena (Love-in-a-mist). Biochem J 133:251–254.

    PubMed  CAS  Google Scholar 

  • Canonica L, Jommi G, Scolastico C, Bonati A (1963) Sul principio farmacologicamente attivo della Nigella sativa L. Gazz Chim Ital 93:1404–1407.

    CAS  Google Scholar 

  • Chand S, Roy SC (1980a) Study of callus tissues from different parts of Nigella sativa (Ranunculaceae). Experientia 36:305–306.

    Article  Google Scholar 

  • Chand S, Roy SC (1980b) Cytological abnormalities during culture of Nigella sativa. Protoplasma 104:353–357.

    Article  Google Scholar 

  • Chand S, Roy C (1981) Induction of organogenesis in callus cultures of Nigella sativa. Ann Bot (London) 48:1–4.

    CAS  Google Scholar 

  • Chattopadhyay S, Bandyopadhyay MN, Mukherjee BB (1980) Growth and IAA balance in Nigella sativa L. callus in vitro influenced by light and culture media. Indian J Exp Biol 18:93–95.

    CAS  Google Scholar 

  • Datta AK, Biswas AK (1984) Cytomixis and a trisomic in Nigella sativa L. Cytologia 49:437–445.

    Article  Google Scholar 

  • Datta AK, Das JL, Biswas AK (1987) Electrophoretic characterization and evaluation of proteins in control and mutant lines of Nigella sativa L. Cytologia 52:317–322.

    Article  CAS  Google Scholar 

  • Davis PH, Cullen J, Coode MJ (1965) Flora of Turkey, vol 1. Univ Press, Edinburgh.

    Google Scholar 

  • Degraeve N, Gilot-Delhalle J (1972) Cytological effects of vinblastine in plants. Experientia 28:581–582.

    Article  PubMed  CAS  Google Scholar 

  • Deshpande RS, Adlukary PR, Tipnis HP (1974) Stored grain pest control agents from Nigella sativa and Pogostemon heyneanus. Bull Grain Technol 12:232–234.

    CAS  Google Scholar 

  • Doebel P (1983) Verringerung des Ploidiegrades und der Restitutionskernbildung in einer gegen hohe 2,4-D-Konzentrationen resistenten Suspensionskultur von Nigella damascena. Biol Zentralbl 102:431–444.

    Google Scholar 

  • Döpke W, Fritsch G (1970) Der Alkaloidgehalt von Nigella damascena L. Pharmazie 25:69–70.

    PubMed  Google Scholar 

  • Duke JA (1982) Ecosystematic data on medicinal plants. In: Atal CK, Kapur BM (eds) Cultivation and utilization of medicinal plants. Reg Res Lab, Jammu-Tawi, India, pp 13–23.

    Google Scholar 

  • El-Dakhakhny M (1963) Studies on the chemical constitution of Egyptian Nigella sativa L. seeds. II. The essential oil. Planta Med 11:465–470.

    Article  CAS  Google Scholar 

  • El-Dakhakhny M (1965) Studies on the Egyptian Nigella sativa L. Arzneimittelforschung 15:1227–1229.

    PubMed  CAS  Google Scholar 

  • Frencel I (1965) Diss Pharm Pol 17:577–584.

    CAS  Google Scholar 

  • Gad AM, El-Dakhakhny M, Hassan MM (1963) Studies on the chemical constitution of Egyptian Nigella sativa L. oil. Planta Med 11:134–138.

    Article  CAS  Google Scholar 

  • Ghosh A, Gadgil VN (1979) Shift in ploidy level of callus tissue: a function of growth substances. Indian J Exp Biol 17:562–564.

    CAS  Google Scholar 

  • Ghosh A, Gadgil VN (1980) Selection pressure theory and predominance of diploidy in suspension culture. Indian J Exp Biol 18:958–961.

    Google Scholar 

  • Gill BS, Srivastava PK (1974) A simple technique for demonstrating heterochromatin in Nigella. Experientia 30:1483.

    Article  PubMed  CAS  Google Scholar 

  • Gilot-Delhalle J, Degraeve N, Moutschen J (1976) Cytotaxonomic investigation of the genus Nigella (Helleboreae) with C-banding techniques. Caryologia 29:139–154.

    Google Scholar 

  • Gmoshinskii IV, Yampol’Skaya GP, Rotanova TV, Ginodman LM (1982) Topographical study of the active center of lipase from Nigella damascena L. (Damask love-in-a-mist). Bioorg Khim 8:822–829.

    CAS  Google Scholar 

  • Gorodetzkii IP, Chernov NE, Korchagina LN, Rudyuk VF, Chernobai VT (1976) Study of the process of sublimation drying of lipase from Nigella damascena L. seeds. Farm Zh (Kiev) 4:55–57.

    Google Scholar 

  • Gracza L (1986) Pharmazeutische Zubereitung. Patent Ger Offen 3 511 862, Int C1 A 61 K 35/78, Appl 1.4.1985, Publ 9.10.1986.

    Google Scholar 

  • Greyson RI, Tepfer SS (1966) An analysis of stamen filament growth of Nigella hispanica. Am J Bot 53:485–490.

    Article  Google Scholar 

  • Gupta S (1972) Tissue culture of Nigella sativa. I. The behaviour of nucleus. Experientia 28:441–443.

    Article  Google Scholar 

  • Hampel G (1957) Über die anatomischen Merkmale von Getreide-Unkrautsamen. II. Mitt. Acker-Schwarzkümmel und Acker-Wachtelweizen. Z Lebensmittelunters forsch 105:373–378.

    Article  Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der Pflanzen, vol 6. Birkhäuser, Basel, pp 14, 19, 28, 33, 43, 44, 274, 594.

    Google Scholar 

  • Higginson D (1981) Lipases as natural high-molecular-weight surfactants. I. Isolation and properties of lipase from Nigella damascena L. Depos Doc 1981: VINITI, 575–582, 828-832.

    Google Scholar 

  • Hildebrandt AC, Riker AJ, Duggar BM (1946) The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue cultures. Am J Bot 33:591–597.

    Article  CAS  Google Scholar 

  • Iha TB, Roy SC (1979) Rhizogenesis from Nigella sativa protoplasts. Protoplasma 101:139–142.

    Article  Google Scholar 

  • Istratescu-Guti L, Forstner S (1974) Ascorbic acid content of Batrachiophyta plants. Farmacia (Bucharest) 22:489–492.

    CAS  Google Scholar 

  • Jensen U (1984) Legumin-like and vicilin-like storage proteins in Nigella damascena (Ranunculaceae) and six other dicotyledonous species. J Plant Physiol 115:161–170.

    CAS  Google Scholar 

  • Jensen U, Grumpe B (1983) Seed storage proteins. In: Jensen U, Fairbrothers DE (eds) Proteins and nucleic acids in plant systematics. Springer, Berlin Heidelberg New York, pp 238–254.

    Chapter  Google Scholar 

  • Jukneviciene G, Dagyte S, Stankeviciene N (1977) Biological properties and essential oils of some spice plants grown at the Kaunas Botanical Garden. 2. Plants, the seeds of which are used as a raw material for spicery. Liet TSR Mokslu Akad Darb Ser C 3:9–16.

    Google Scholar 

  • Kabachnyi PI, Gorodetskaya ZV, Chernobai VT (1986) ß-Fructofuranosidase activity of the seed of some cultivated plants. Farm Zh (Kiev) 1986(3): 59–62.

    Google Scholar 

  • Kabachnyi PI, Kortunova TV, Chernobai VT (1987) Activity of amylolytic enzymes in extracts of agricultural plant seeds. Farm Zh (Kiev) 1987:45–48.

    Google Scholar 

  • Kartha ARS, Khan RA (1969) Proportions of Δ7,8-octadecanoic acids in seed fats from ten umbelliferae species. Chem and Ind 1969:1869–1872.

    Google Scholar 

  • Keller O (1908) Studien über die Alkaloide der Nigella-Arten. Arch Pharm 246:1–50.

    Article  CAS  Google Scholar 

  • Kirichenko BM, Koreshchuk KE, Drozd GA, Kremzer AA (1971) Kaempferol and quercetine from Nigella arvensis. Khim Prir Soed 7:371–372.

    CAS  Google Scholar 

  • Klasterska I, Natarajan AT (1975) Distribution of heterochromatin in the chromosomes of Nigella damascena and Vicia faba. Hereditas 79:154–156.

    Article  PubMed  CAS  Google Scholar 

  • Korchagina LN, Rudyuk VF (1975) Conditions for isolation of the lipase enzyme from love-in-a-mist (Nigella damascena) seeds. Prikl Biokhim Microbiol 11:443–446.

    CAS  Google Scholar 

  • Korchagina LN, Rudyuk VF (1979) Effect of fatty and bile acids and thiol reagents on lipase activity in Nigella damascena L. seeds. Prikl Biokhim Mikrobiol 15:112–116.

    CAS  Google Scholar 

  • Korchagina LN, Rudyuk VP, Chernobai VT (1973) Lipase activity of seeds and vegetative organs of several plants. Rast Resur 9:577–581.

    CAS  Google Scholar 

  • Lehmann H, Preiss A, Schmidt J (1983a) A novel abscisic acid metabolite from cell suspension cultures of Nigella damascena. Phytochemistry 22:1277–1278.

    Article  CAS  Google Scholar 

  • Lehmann H, Boehm H, Schuette HR (1983b) The metabolism of abscisic acid in cell cultures of various plant species. Z Pflanzenphysiol 109:423–428.

    CAS  Google Scholar 

  • Mothes K (1966) Diskussion zu Munsche. In: Mothes K, Gross D, Liebisch H-W, Schuette HR (eds) Abh Dtsch Akad Wiss Berlin, K1 Chem Geol Biol, 13:615.

    Google Scholar 

  • Moutschen J, Moutschen-Dahmen M (1965) A suitable material for chromosome breakage studies: Nigella damascena L. Naturwissenschaften 20:566–567.

    Article  Google Scholar 

  • Moutschen J, Moutschen-Dahmen M, Gilot-Delhalle J, Woodley R (1969) The relative biological effectiveness of different kinds of radiations on chromosome aberrations in Nigella damascena seed. Int J Radiat Biol 15:525–540.

    Article  CAS  Google Scholar 

  • Moutschen J, Gilot-Delhalle J, Moutschen-Dahmen M (1987) Clastogenic effects of benzodiazepines in a Nigella damascena seed test. Environ Exp Bot 27:227–231.

    Article  CAS  Google Scholar 

  • Mukherjee BB, Chattopadhyay S, Ganguli SN (1981) Spectrofluorimetric determination of endogenous level of IAA from tissues of Nigella saliva L. grown in vitro. Indian J Exp Biol 19:295–297.

    CAS  Google Scholar 

  • Munsche D (1964) Zytologische Untersuchungen zur Biosynthese des Damascenins. 5. Mitteilung über das Damascenin. Flora 154:317–324.

    CAS  Google Scholar 

  • Munsche D (1966) Biosynthese des Damascenins. In: Mothes K, Gross D, Liebisch H-W, Schuette HR (eds) Abh Dtsch Akad Wiss Berlin, Kl Chem Geol Biol 3:611–614.

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Mustafa Z, Soliman G (1943) Melanthigenin and its identity with hederagenin. J Chem Soc 1943:70–71.

    Article  Google Scholar 

  • Nagata PR, Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20.

    Article  Google Scholar 

  • Namba T, Tsunezuka M, Dissanayake DMRB, Pilapitiya U, Saito K, Kakiuchi N, Hattori M (1985) Studies on dental cares prevention by traditional medicines, pt 7. Screening of ayurvedic medicines for anti-plaque action. Shoyakugaku Zasshi 39:146–153.

    CAS  Google Scholar 

  • Nijland MM, Uffelie OF (1965) Voorkomen van Magnoflorine in de Ranunuculaceae. Pharm Weekbl 100:49–51.

    Google Scholar 

  • Orton TJ (1980) Chromosomal variability in tissue culture and regenerated plants of Hordeum. Theor Appl Genet 56:101–112.

    Article  CAS  Google Scholar 

  • Potekhina TS, Shataeva LK, Rudyuk VF, Samsonova GV (1982) Purification of plant lipase on a carbocyclic cation exchange resin. Khim Farm Zh 16:462–465.

    CAS  Google Scholar 

  • Raman K, Greyson RI (1974) In vitro induction of embryoids in tissue cultures of Nigella damascena. Can J Bot 52:1988–1989.

    Article  Google Scholar 

  • Raman K, Greyson RI (1977) Changes during development in the compartmentalization patterns of extractable gibberellin-like substances in “single” and “double” genotypes of Nigella damascena. Can J Bot 55:2115–2121.

    Article  CAS  Google Scholar 

  • Raman K, Greyson RI (1978) Further observations on the differential sensitivities to plant growth regulators by cultured “single” and “double” flower buds of Nigella damascena L. (Ranuncu1aceae). Am J Bot 65:180–191.

    Article  CAS  Google Scholar 

  • Rechinger KH (ed) (1964) Flora of lowland Iraq. Cramer, Weinheim.

    Google Scholar 

  • Rudyuk VF, Korchagina LN (1975) Properties of lipase from Nigella damascena seeds. Khim Prir Soed 5:645–648.

    Google Scholar 

  • Rudyuk VF, Korchagina LN (1976) Isolation and partial purification of lipase from Nigella damascena seeds. Prikl Biokhim Mikrobiol 12:45–48.

    CAS  Google Scholar 

  • Rudyuk VF, Korchagina LN (1977) Effect of metal ions on the activity of lipase from Nigella damascena L. seeds. Prikl Biokhim Mikrobiol 13:319–323.

    CAS  Google Scholar 

  • Rudyuk VF, Korchagina LN (1981) Effect of digestive apparatus secretions on the lipase activity of Nigella damascena L. seeds. Khim Farm Zh 15:59–62.

    CAS  Google Scholar 

  • Rudyuk VF, Korchagina LN, Chernobai VT (1984) Nigedase enzymatic preparations. USSR Patent 1 118 673, Int Cl C 12 N 9/18, Appl. 3.12.82, Publ 15.10.84.

    Google Scholar 

  • Salama RB (1973) Sterols in the seed oil of Nigella sativa. Planta Med 24:375–377.

    Article  PubMed  CAS  Google Scholar 

  • Sayed MD (1980) Traditional medicine in health care. J Ethnopharmacol 2:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Schmauder H-P, Doebel P (1988) Zum Lichteinfluß auf Fermentorkulturen von Nigella dämascena L. Acta Biotechnol 8:151–159.

    Article  Google Scholar 

  • Schmauder H-P, Doebel P, Gröger D (1984) Charakterisierung von Nigella damascena-Zellkulturen in Airlift-Fermentoren. Biochem Physiol Pflanzen 179:611–622.

    CAS  Google Scholar 

  • Schmauder H-P, Schröder W, Böhm H, Klossek P (1991) Einfluß von 5-Fluor-D,L-tryptophan auf Zellkulturen von Nigella dämascena L. Biochem Physiol Pflanzen (in preparation).

    Google Scholar 

  • Schröder W (1985) Einsatz genetisch-züchterischer Methoden zur Verbesserung der Sekundärstoffbildung in pflanzlichen Zellkulturen. Diss A, Akad Wiss DDR.

    Google Scholar 

  • Sethi M, Rangaswamy NS (1976) Endosperm embryoids in cultures of Nigella damascena. Curr Sci 45:109–111.

    Google Scholar 

  • Takagi T, Itabashi Y, Kaneniwa M, Mizukami M (1983) Trans-5-olefinic unusual fatty acids in seed lipids of Aquilegia. Yukagaku 32:367–374.

    CAS  Google Scholar 

  • Tillequin F, Leconte C, Paris M (1976) Carbures sesquiterpenes des graines de Nigella dämascena. Planta Med 30:59–61.

    Article  PubMed  CAS  Google Scholar 

  • Torrey JG (1967) Morphogenesis in relation to chromosomal constitution in long-term plant tissue cultures. Physiol Plant 20:265–275.

    Article  Google Scholar 

  • Toxopeus HJ (1927) Erblichkeitsuntersuchungen an Nigella damascena L. Genetica 9:341–440.

    Article  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) (1964) Flora europaea, vol 1. Univ Press, Cambridge.

    Google Scholar 

  • Vishin ML (1961) A note on the fatty oil obtained from Nigella damascena seeds. Curr Sci 30:55–56.

    CAS  Google Scholar 

  • Vishin ML, Mothes K, Engelbrecht L, Schröter HB (1960) Biosynthesis of damascenine in Nigella damascena L. Nature (London) 188:61–62.

    Article  CAS  Google Scholar 

  • Vishin ML, Munsche D, Schröter HB (1964) Untersuchungen über den Bildungsort des Damascenins in Nigella damascena. 4. Mitteilung über das Damascenin. Flora 154:299–316.

    CAS  Google Scholar 

  • Vohora SB, Khan MSY, Afaq SH (1973) Antifertility studies on Unani herbs. Part II, Antiovulatory effects of ‘Hanzal’, ‘Halun’, ‘Kalonij’ and’ sambhalu’. Indian J Pharm 35:100–102.

    Google Scholar 

  • Wallaart RAM (1981) Acyclic polyols as taxonomic characters 4. Distribution of polyols in Ranun-culaceae. Proc Koeninkl Ned Akad Wet, Ser C 84:465–477.

    CAS  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. Cattel, Tempe, Ar.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmauder, HP., Doebel, P. (1991). Nigella spp.: In Vitro Culture, Regeneration, and the Formation of Secondary Metabolites. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants III. Biotechnology in Agriculture and Forestry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84071-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84071-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84073-9

  • Online ISBN: 978-3-642-84071-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics