Stability of Dynamically Loaded Structures

  • Dieter Dinkler
  • Bernd Kröplin
Part of the Springer Series in Computational Mechanics book series (SSCMECH)


A method is suggested, which simplifies the investigations to the safety of buckling structures under time depending actions. The static analysis of the structure is used in order to fix the critical deformation state and hence the critical strain energy. Representing the deformation behaviour and the loading by some energetic measures an approximation for the development of the motion during the loading may be computed with relatively little effort by using Galerkin’s procedure. If the effect of the external actions is expressed by the energy which is induced to the structure during the loading, the proof of the stability may be given by comparing this external energy to the critical strain energy.


Critical Energy Reference Surface External Energy Elastic Stability Critical Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koiter, W.T.: General Equations of Elastic Stability for thin Shells. Proc. Symp. in Honor of Lloyd H. Donnell, D. Muster Ed.. Houston: University of Houston Press 1966 187–228Google Scholar
  2. 2.
    Leipholz, H.: Stabilität elastischer Systeme. Karlsruhe: Verlag G.Braun 1980MATHGoogle Scholar
  3. 3.
    Huseyin, K.: Nonlinear Theory of Elastic Stability. Leyden: Noordhoff Int. Publ. 1975MATHGoogle Scholar
  4. 4.
    Thompson, J.M.T.; Hunt, G.W.: A General Theory of Elastic Stability. London: John Wiley Sons 1973MATHGoogle Scholar
  5. 5.
    Ziegler, H.: Die Stabilitätscriterien der Elastomechanik. Ingenieur Archiv 20 (1952) 49–56MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hayashi, C.: Nonlinear Oscillations in Physical Systems. New York: Mc GrawHill Book Company 1964MATHGoogle Scholar
  7. 7.
    Thompson, J.M.T.; Stewart, H.B.: Nonlinear Dynamics and Chaos. Chichester: John Wiley Sons 1986MATHGoogle Scholar
  8. 8.
    Haken, H.: Order in Chaos. Computer Methods in Applied Mechanics and Engineering 52 (1984) 635–652MathSciNetCrossRefGoogle Scholar
  9. 9.
    Koiter, W.T.: On the Thermodynamic Background of Elastic Stability Theory. Problems of Hydrodynamics and Continuum Mechanics. L.I.Sedov Anniversary Vol. SIAM. Philadelphia: 1969Google Scholar
  10. 10.
    Malkin, J.G.: Theorie der Stabilität einer Bewegung. München: Verlag R.Oldenbourg 1959MATHGoogle Scholar
  11. 11.
    Dinkler, D.: Stabilität dünner Flächentragwerke bei zeitabhängigen Einwirkungen. Bericht Nr. 87–52, Institut für Statik - TU Braunschweig, Herausgeber Prof.Dr: Ing.H.Duddeck. Braunschweig: Eigenverlag 1987Google Scholar
  12. 12.
    Dinkler,D.: Stabilität elastischer Tragwerke mit nichtlinearem Verformungsverhalten bei instationären Einwirkungen. Ingenieur-Archiv 59 (1989). Berlin: Springer VerlagGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Dieter Dinkler
    • 1
  • Bernd Kröplin
    • 1
  1. 1.Institut für Statik und DynamikUniversität StuttgartGermany

Personalised recommendations