Advertisement

Super Hamiltonian Operators and Lie Superalgebras

  • E. D. van der Lende
  • H. G. J. Pijls
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

A superversion of the formal calculus of variations as developed by I.M. Gel’fand et al. is presented. It is proved that with a linear super Hamiltonian operator one can associate a Lie superalgebra structure on the space of (reduced) 1-forms and vice versa. Also a theorem is proved about the connection between cocycles on this Lie superalgebra and super Hamiltonian operators. Finally an application is given.

References

  1. 1.
    Gel’fand, I.M. and Dorfman, I.Ya. Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (4), 248–262 (1979).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gel’fand, I.M. and Dorfman, I.Ya.–The Schouten bracket and Hamiltonian operators. Funct. Anal. Appl. 14 (3), 223–226 (1980).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gel’fand, I.M. and Dorfman, I.Ya. Hamiltonian operators and infinite-dimensional Lie algebras. Funct. Anal. Appl. 15 (3), 173–187 (1981).CrossRefGoogle Scholar
  4. 4.
    Kupershmidt, B.A. Odd and Even Poisson Brackets in Dynamical Systems. Lett. Math. Phys. 9, 323–330 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Kupershmidt, B.A. Super Korteweg-de Vries equations associated to super extensions of the Virasoro algebra. Phys. Letters 109 A, nr. 9, 417–423 (1985).MathSciNetADSGoogle Scholar
  6. 6.
    Kupershmidt, B.A. An algebraic model of graded calculus of variations. Math. Proc. Camb. Phil. Soc. 101, 151–166 (1987).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Lende, E. van der and Pijls, H.G.J. Super Hamiltonian Operators and Lie superalgebras. To appear in Indagationes Math.Google Scholar
  8. 8.
    Manin, Yu.I. and Radul, A.O.–A Supersymmetric Extension of the Kadomtsev-Petviashvili Hierarchy. Commun. Math. Phys. 98, 65–75 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Mathieu, P. Hamiltonian Structure of Graded and Super Evolution Equations. Lett. Math. Phys. 16, 199–206 (1988).MathSciNetADSMATHGoogle Scholar
  10. 10.
    Mathieu, P. Supersymmetric extension of the Korteweg-de Vries equation. J. Math. Phys. 29 (11), 2499–2506 (1988).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • E. D. van der Lende
    • 1
  • H. G. J. Pijls
    • 1
  1. 1.Mathematical InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations