Advertisement

GN Manifolds, Yang-Baxter Equations and ILW Hierarchies

  • C. Morosi
  • G. Tondo
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

The solutions of the Yang-Baxter equations are used to construct a GN manifold in an associative algebra. A suitable realization gives rise to the two representations of the Intermediate Long Wave (ILW) equation.

Keywords

Vector Field Associative Algebra Poisson Structure Symmetry Algebra Bihamiltonian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Magri, C. Morosi, G. Tondo, Commun. Math. Phys. 115 (1988), 457.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    V.E. Zakharov, B.G.Konopelchenko, Commun. Math. Phys. 94 (1984), 94.MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.S. Fokas, P.M. Santini, Commun. Math. Phys. 115 (1988), 375.MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    A.S. Fokas, P.M. Santini, Commun. Math. Phys. 116 (1988), 449.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    W. Oevel, in “Topics in Soliton theory and exactly solvable non linear equations,” M. Ablowitz et al. eds.. World Scientific, Singapore, 1987, p. 108.Google Scholar
  6. 6.
    M.A. Semenov-Tian-Shansky, Funct. Anal. Appl. 17 (1983), 259.CrossRefGoogle Scholar
  7. 7.
    C. Morosi, G. Tondo, Commun. Math. Phys. 122 (1989), 91.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    W. Oevel, O. Ragnisco, R-matrices and higher Poissonbrackets,Physica A (to appear).Google Scholar
  9. 9.
    O. Ragnisco, P.M. Santini, A unified approach to integral and discrete evolution equations, preprint 668. Universith di Roma I (1989).Google Scholar
  10. 10.
    C. Morosi, G. Tondo, Some remarks on the bihamiltonian structure of integral and discrete evolution equations, preprint (1989).Google Scholar
  11. 11.
    P.M. Santini, Inverse Problems 5 (1989), 203.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • C. Morosi
    • 1
  • G. Tondo
    • 2
  1. 1.Dipartimento di MatematicaUniversità di PerugiaPerugiaItaly
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations