Action-Angle Variables and Asymptotic Data

  • G. Oevel
  • B. Fuchssteiner
  • M. Błaszak
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

By use of mastersymmetries we construct the action/angle variables for multi-soliton systems in terms of the field variable u. Furthermore, an interpretation in terms of asymptotic data is given.

Keywords

Manifold Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Abraham, J.E. Marsden: Foundations of Mechanics, 2nd ed., Benjamin/Cummings Publ., Massachusetts (1981)Google Scholar
  2. [2]
    H.H. Chen, Y.C. Lee, J.E. Lin: On a new Hierarchy of Symmetries for the Integrable Nonlinear Evolution Equations, preprint, University of Maryland (1982)Google Scholar
  3. [3]
    B. Fuchssteiner: Application of Hereditary Symmetries to Nonlinear Evolution equations, Nonlinear Analysis TMA 3, 849–862 (1979)MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    B. Fuchssteiner, A.S. Fokas: Symplectic Structures, their Bäcklund Transformations and Hereditary Symmetries, Physica 4D, 47–66 (1981)MathSciNetMATHGoogle Scholar
  5. [5]
    B. Fuchssteiner: The Lie-Algebra Structure of Nonlinear Evolution Equations admitting infinite dimensional Abelian Symmetry Groups, Prog. Theor. Phys. 65, 861–876 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    B. Fuchssteiner: Mastersymmetries, Higher order time-dependent Symmetries and Conserved Densities of Nonlinear Evolution Equations, Prog. Theor. Phys. 70, 1508–1522 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    B. Fuchssteiner: Linear Aspects in the theory of Solitons and integrable equations, preprint, University of Paderborn (1989)Google Scholar
  8. [8]
    B. Fuchssteiner, Gudrun Oevel: Geometry and Action-Angle Variables of Multi Soliton Systems, preprint, University of Paderborn (1989)Google Scholar
  9. [9]
    B. Fuchssteiner: this volumeGoogle Scholar
  10. [10]
    I.M. Gel’fand, I.Y. Dorfman: Hamiltonian Operators and Algebraic Structures related to them, Funct. Anal. Appl. 13, 248–262 (1979)MathSciNetGoogle Scholar
  11. [11]
    F. Magri: A Simple Model of the Integrable Hamiltonian Equation, J. Math. Phys. 19, 1156–1162 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    S. P. Novikov: The periodic problem for the Korteweg-de Vries equation, Funct. Anal. Appl. 8, 236–246 (1974)MATHGoogle Scholar
  13. [13]
    Gudrun Oevel, B. Fuchssteiner, M. Blaszak: Action-angle representation of Multisolitons by potentials of mastersymmetries, preprint, University of Paderborn (1989)Google Scholar
  14. [14]
    P.J. Olver: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer, New York (1986)Google Scholar
  15. [15]
    A.Y. Orlov, E.I. Schulman: Additional Symmetries for Integrable Equations and Conformal Algebra Representation, Lett. Math. Phys. 12, 171–179 (1986)MathSciNetADSMATHGoogle Scholar
  16. [16]
    H.M.M. Ten Eikelder: Symmetries for Dynamical and Hamiltonian Systems, CWI Tract, 17, CWI Amsterdam (1985)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • G. Oevel
    • 1
  • B. Fuchssteiner
    • 1
  • M. Błaszak
    • 2
  1. 1.Department of MathematicsUniversity of PaderbornPaderbornFed. Rep. of Germany
  2. 2.Institute of PhysicsA. Mickiewicz UniversityPoznańPoland

Personalised recommendations